Skill and lead time of vegetation drought impact forecasts based on soil moisture observations

环境科学 植被(病理学) 含水量 草原 卫星 水分 水文学(农业) 卫星图像 气候学 遥感 气象学 农学 地质学 地理 生物 工程类 病理 航空航天工程 医学 岩土工程
作者
Yi-Zhi Li,Albert I. J. M. van Dijk,Siyuan Tian,Luigi J. Renzullo
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:620: 129420-129420
标识
DOI:10.1016/j.jhydrol.2023.129420
摘要

Timely and skilful forecasts of vegetation drought impacts should enable more proactive drought preparedness, management, and mitigation. Numerous previous studies found a temporal correlation between soil moisture and vegetation condition. However, a correlation across the full range of soil moisture and vegetation condition does not automatically translate into skill in forecasting infrequent events such as agricultural droughts. Here, we develop a threshold- or impact-based forecasting framework to assess early warning capability (EWC). We analysed the skill and lead time achieved using soil moisture observations at multiple depths as predictors of subsequent vegetation drought impacts inferred from MODIS satellite observations at 93 sites across the United States. Forecast thresholds were expressed in terms of seasonally-adjusted standardised anomalies (z-scores) to distinguish climate-related impacts from any seasonal vegetation cycle. Different combinations of soil moisture integration depth, satellite vegetation indices and threshold levels were tested. Near-Infrared Reflectance of vegetation (NIRv) yielded a marginally better EWC than other indicators of vegetation drought impact. The optimal soil moisture integration depth varied between land cover types, from 0 to 10 cm for cropping systems to 0–100 cm for grassland and savanna. The greatest skill improvements were achieved using similar z-score threshold values for the soil moisture trigger and vegetation impact, producing typical lead times of two to four weeks. Further research is recommended to combine the framework developed here with spatially continuous soil moisture analyses or forecasts available from remote sensing and land surface models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
licheng完成签到,获得积分10
1秒前
轩辕中蓝完成签到 ,获得积分10
3秒前
chaoge完成签到 ,获得积分10
3秒前
hiha完成签到,获得积分0
4秒前
申燕婷完成签到 ,获得积分10
5秒前
916应助songvv采纳,获得10
9秒前
14秒前
嘿嘿应助songvv采纳,获得10
15秒前
毛毛完成签到,获得积分10
17秒前
drwang120完成签到 ,获得积分10
23秒前
闪闪的从彤完成签到 ,获得积分10
24秒前
bkagyin应助毛毛采纳,获得10
24秒前
程哲瀚完成签到,获得积分10
28秒前
逍遥呱呱完成签到 ,获得积分10
28秒前
ʚᵗᑋᵃᐢᵏ ᵞᵒᵘɞ完成签到,获得积分10
28秒前
风清扬应助科研通管家采纳,获得30
29秒前
CipherSage应助科研通管家采纳,获得10
29秒前
CipherSage应助科研通管家采纳,获得10
29秒前
海东来应助科研通管家采纳,获得100
29秒前
Vanilla应助科研通管家采纳,获得10
29秒前
29秒前
29秒前
搜集达人应助科研通管家采纳,获得10
29秒前
Boris应助科研通管家采纳,获得10
29秒前
明天你好发布了新的文献求助10
31秒前
橙酒完成签到,获得积分10
33秒前
zty发布了新的文献求助30
36秒前
Jasper应助小熊维C采纳,获得10
36秒前
佳无夜完成签到,获得积分10
37秒前
Eva完成签到,获得积分10
39秒前
神经娃完成签到,获得积分10
39秒前
39秒前
务实鞅完成签到 ,获得积分10
42秒前
CodeCraft应助小王采纳,获得10
43秒前
chendahuanhuan完成签到 ,获得积分10
45秒前
孟孟发布了新的文献求助10
45秒前
隐形惜筠完成签到 ,获得积分10
48秒前
明天你好完成签到,获得积分10
50秒前
喻紫寒完成签到 ,获得积分10
54秒前
花痴的电灯泡完成签到,获得积分10
55秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4043810
求助须知:如何正确求助?哪些是违规求助? 3581516
关于积分的说明 11384047
捐赠科研通 3308810
什么是DOI,文献DOI怎么找? 1821181
邀请新用户注册赠送积分活动 893590
科研通“疑难数据库(出版商)”最低求助积分说明 815769