Ultra-short-term wind power forecasting method based on multi-variable joint extraction of spatial-temporal features

期限(时间) 风力发电 接头(建筑物) 变量(数学) 计算机科学 萃取(化学) 数据挖掘 特征提取 环境科学 气象学 工程类 人工智能 地理 土木工程 电气工程 数学 色谱法 量子力学 物理 数学分析 化学
作者
Z Lei,Caiyan Wang,Tao Liu,Sheng Wang,Jingxiang Xu,Guoquan Yao
出处
期刊:Journal of Renewable and Sustainable Energy [American Institute of Physics]
卷期号:16 (4)
标识
DOI:10.1063/5.0212699
摘要

Accurate and reliable wind power forecasting is imperative for wind power stations' stable and efficient operation. Information such as wind speed and wind direction in the same wind field has spatial-temporal differences. Considering the spatial-temporal changes in wind fields can improve model prediction accuracy. However, existing methods suffer from limited ability to capture correlation features among variables, information loss in spatial-temporal feature extraction, and neglect short-term temporal features. This paper introduces a novel ultra-short-term wind power forecasting method based on the combination of a deep separable convolutional neural network (DSCNN) and long- and short-term time-series network (LSTNet), incorporating maximum information coefficient (MIC) to realize multi-variable joint extraction of spatial-temporal features. The method utilizes MIC to jointly analyze and process the multi-variate variables before spatial-temporal feature extraction to avoid information redundancy. The spatial features between input variables and wind power are extracted by deep convolution and pointwise convolution in DSCNN. Then, a convolutional neural network and gated recurrent unit in LSTNet are combined to capture long-term and short-term temporal features. In addition, an autoregressive module is employed to accept features extracted by MIC to enhance the model's learning of temporal features. Based on real datasets, the performance of models is validated through comprehensive evaluation experiments such as comparison experiments, ablation experiments, and interval prediction methods. The results show that the proposed method reduces mean absolute error by up to 4.66% and provides more accurate prediction intervals, verifying the accuracy and effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
夏硕士完成签到 ,获得积分10
1秒前
桐桐应助冷静采纳,获得10
1秒前
半分青蓝完成签到,获得积分10
1秒前
1秒前
yan完成签到,获得积分10
1秒前
2秒前
原始完成签到,获得积分10
2秒前
逸龙完成签到,获得积分10
2秒前
陨落的繁星完成签到,获得积分10
2秒前
美满的机器猫完成签到,获得积分10
2秒前
3秒前
lynn完成签到 ,获得积分10
4秒前
完美世界应助Electra采纳,获得10
4秒前
李薇发布了新的文献求助10
4秒前
4秒前
huhutu完成签到,获得积分10
5秒前
九号球完成签到,获得积分10
5秒前
小木虫完成签到,获得积分10
5秒前
6秒前
WSGQT发布了新的文献求助10
6秒前
小新完成签到,获得积分10
7秒前
lseonf发布了新的文献求助10
7秒前
Winks完成签到,获得积分10
7秒前
华仔应助姜茶采纳,获得10
8秒前
8秒前
小葵发布了新的文献求助10
8秒前
丫丫发布了新的文献求助10
9秒前
黄嘉旋发布了新的文献求助10
9秒前
天天天王完成签到,获得积分10
10秒前
冷傲的道罡完成签到,获得积分10
10秒前
受伤访波完成签到,获得积分10
10秒前
ding应助搬砖达人采纳,获得10
10秒前
11秒前
11秒前
11秒前
信仰完成签到,获得积分10
11秒前
11秒前
痴情的如柏关注了科研通微信公众号
11秒前
aluo发布了新的文献求助10
12秒前
高分求助中
Java: A Beginner's Guide, 10th Edition 5000
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Research Handbook on Multiculturalism 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3848343
求助须知:如何正确求助?哪些是违规求助? 3391055
关于积分的说明 10565200
捐赠科研通 3111522
什么是DOI,文献DOI怎么找? 1714830
邀请新用户注册赠送积分活动 825479
科研通“疑难数据库(出版商)”最低求助积分说明 775556