Efficient Federated DRL-Based Cooperative Caching for Mobile Edge Networks

计算机科学 隐藏物 仿真 计算机网络 杠杆(统计) 智能缓存 虚假分享 边缘设备 分布式计算 GSM演进的增强数据速率 延迟(音频) 缓存算法 CPU缓存 操作系统 云计算 经济增长 电信 机器学习 经济
作者
Aleteng Tian,Bohao Feng,Huachun Zhou,Yunxue Huang,Keshav Sood,Shui Yu,Hongke Zhang
出处
期刊:IEEE Transactions on Network and Service Management [Institute of Electrical and Electronics Engineers]
卷期号:20 (1): 246-260 被引量:46
标识
DOI:10.1109/tnsm.2022.3198074
摘要

Edge caching has been regarded as a promising technique for low-latency, high-rate data delivery in future networks, and there is an increasing interest to leverage Machine Learning (ML) for better content placement instead of traditional optimization-based methods due to its self-adaptive ability under complex environments. Despite many efforts on ML-based cooperative caching, there are still several key issues that need to be addressed, especially to reduce computation complexity and communication costs under the optimization of cache efficiency. To this end, in this paper, we propose an efficient cooperative caching (FDDL) framework to address the issues in mobile edge networks. Particularly, we propose a DRL-CA algorithm for cache admission, which extracts a boarder set of attributes from massive requests to improve the cache efficiency. Then, we present an lightweight eviction algorithm for fine-grained replacements of unpopular contents. Moreover, we present a Federated Learning-based parameter sharing mechanism to reduce the signaling overheads in collaborations. We implement an emulation system and evaluate the caching performance of the proposed FDDL. Emulation results show that the proposed FDDL can achieve a higher cache hit ratio and traffic offloading rate than several conventional caching policies and DRL-based caching algorithms, and effectively reduce communication costs and training time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助小西采纳,获得10
1秒前
小蘑菇应助江湖小刀采纳,获得10
2秒前
风中冰香发布了新的文献求助20
2秒前
hchnb1234完成签到,获得积分10
2秒前
2秒前
搜集达人应助wangaiiisijiji采纳,获得10
2秒前
PANYIAO完成签到,获得积分10
3秒前
4秒前
科研通AI5应助牧歌采纳,获得10
4秒前
桐桐应助小吃货采纳,获得10
5秒前
liz发布了新的文献求助10
6秒前
清秋发布了新的文献求助10
6秒前
ZeKaWa应助爱神1945采纳,获得10
7秒前
7秒前
8秒前
9秒前
ding应助养不熟的野猫采纳,获得10
10秒前
BinYan完成签到,获得积分20
10秒前
腼腆的半莲应助风中冰香采纳,获得20
11秒前
小新完成签到 ,获得积分10
11秒前
团子发布了新的文献求助10
11秒前
华仔应助WANGJD采纳,获得10
11秒前
Huanghong发布了新的文献求助20
12秒前
哈基米德应助诺u采纳,获得20
12秒前
lulala完成签到,获得积分10
12秒前
13秒前
afrex完成签到,获得积分10
15秒前
lulala发布了新的文献求助10
15秒前
思源应助pragmatic采纳,获得10
15秒前
BinYan发布了新的文献求助10
16秒前
三十七度二应助科研通管家采纳,获得150
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得150
17秒前
852应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
丘比特应助科研通管家采纳,获得10
17秒前
无花果应助科研通管家采纳,获得30
17秒前
科研通AI6应助x夏天采纳,获得10
17秒前
无情洋葱完成签到,获得积分0
17秒前
上官若男应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5082475
求助须知:如何正确求助?哪些是违规求助? 4299854
关于积分的说明 13397214
捐赠科研通 4123637
什么是DOI,文献DOI怎么找? 2258551
邀请新用户注册赠送积分活动 1262782
关于科研通互助平台的介绍 1196720