Basic Taste Sensation Recognition From EEG Based on Multiscale Convolutional Neural Network With Residual Learning

脑电图 人工智能 卷积神经网络 模式识别(心理学) 计算机科学 脑-机接口 鲜味 特征(语言学) 语音识别 品味 心理学 神经科学 语言学 哲学
作者
Han Gao,Shuo Zhao,Huiyan Li,Li Liu,Hengyang Wang,You Wang,Zhiyuan Luo,Jin Zhang,Guang Li
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-10 被引量:20
标识
DOI:10.1109/tim.2023.3280529
摘要

Taste sensation recognition is a keystone for taste-related Brain-Computer Interface (BCI). A commonly used measurement of brain activity in response to specific stimulation is through electroencephalography (EEG) signals. However, it remains challenging to develop accurate and generalizable EEG-based measurement for human taste sensation. This paper proposes EEG-MSRNet, a novel fully convolutional neural network for EEG-based classification of basic taste sensations (blank, sour, sweet, bitter, salty, umami). Firstly, a multi-scale temporal convolution operation with residual learning is designed to extract features in different frequencies from the down-sampled EEG signals. Subsequently, a multi-scale spatial convolution operation represents the features in a cross-channel manner. Finally, a convolutional layer and global average pooling (GAP) layer are introduced to make predictions with the feature representation instead of the commonly used fully connected layers for classification. An experimental procedure is developed to acquire the EEG signals under taste stimulation. Comparison experiments and ablation studies have proved the stable and generalizable recognition performance of EEG-MSRNet on our self-collected EEG dataset. The results suggest that our EEG-based system with EEG-MSRNet is effective and generalizable for taste sensation recognition, which provides a powerful measurement for taste-related BCI such as taste disorder diagnosis and virtual taste.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
春K完成签到,获得积分10
3秒前
饶天源发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
大个应助何东玲采纳,获得10
5秒前
嗷嗷嗷啊发布了新的文献求助10
5秒前
6秒前
7秒前
zch发布了新的文献求助30
7秒前
春K发布了新的文献求助10
8秒前
xiebl发布了新的文献求助10
9秒前
晴qq发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
Sherlock完成签到,获得积分10
10秒前
12秒前
何东玲完成签到,获得积分20
12秒前
lzy发布了新的文献求助10
13秒前
13秒前
WXR发布了新的文献求助10
13秒前
quzhenzxxx完成签到 ,获得积分10
14秒前
14秒前
酷炫的雪珊完成签到 ,获得积分10
15秒前
shuke发布了新的文献求助10
15秒前
打打应助李妍妍采纳,获得10
16秒前
16秒前
苹果皮发布了新的文献求助10
17秒前
已绕晕完成签到,获得积分10
17秒前
17秒前
小张z发布了新的文献求助10
18秒前
汉堡包应助000采纳,获得10
18秒前
18秒前
fjkssadjk发布了新的文献求助100
19秒前
香蕉茉莉完成签到,获得积分20
19秒前
20秒前
20秒前
cc发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711738
求助须知:如何正确求助?哪些是违规求助? 5205626
关于积分的说明 15265191
捐赠科研通 4863974
什么是DOI,文献DOI怎么找? 2611057
邀请新用户注册赠送积分活动 1561379
关于科研通互助平台的介绍 1518704