An AQI decomposition ensemble model based on SSA-LSTM using improved AMSSA-VMD decomposition reconstruction technique

空气质量指数 趋同(经济学) 计算机科学 一般化 算法 残余物 均方误差 希尔伯特-黄变换 人工智能 统计 数学 气象学 经济增长 白噪声 物理 数学分析 经济
作者
Kai Wang,Xinyue Fan,Xiaoyi Yang,Zhongli Zhou
出处
期刊:Environmental Research [Elsevier BV]
卷期号:232: 116365-116365 被引量:9
标识
DOI:10.1016/j.envres.2023.116365
摘要

Air quality index (AQI) is a key index for monitoring air pollution and can be used as guide for ensuring good public health. Accurate AQI prediction allows timely control and management of air pollution. In this study, a new integrated learning model was constructed to predict AQI. A smart reverse learning approach based on AMSSA was utilized to increase the diversity of populations, and an improved AMSSA (IAMSSA) was established. The optimum parameters with penalty factor α and mode number K of VMD were obtained using IAMSSA. The IAMSSA-VMD was used to decompose nonlinear and non-stationary AQI information series into several regular and smooth sub-sequences. The Sparrow Search Algorithm (SSA) was used to determine the optimum LSTM parameters. The results showed that: (1) IAMSSA exhibits faster convergence and higher accuracy and stability using simulation experiments compared with seven conventional optimization algorithms in 12 test functions. (2) IAMSSA-VMD was used to decompose the original air quality data results in multiple uncoupled intrinsic mode function (IMF) components and one residual (RES). An SSA-LSTM model was built for each IMF and one RES component, which effectively extracted the predicted values. (3) LSTM, SSA-LSTM, VMD-LSTM, VMD-SSA-LSTM, AMSSA-VMD-SSA-LSTM, and IAMSSA-VMD-SSA-LSTM models were used for prediction of AQI based on data from three cities (Chengdu, Guangzhou, and Shenyang). IAMSSA-VMD-SSA-LSTM exhibited the optimal prediction performance with MAE, RMSE, MAPE, and R2 of 3.692, 4.909, 6.241, and 0.981, respectively. (4) Generalization outcomes revealed that the IAMSSA-VMD-SSA-LSTM model had optimal generalization ability. In summary, the decomposition ensemble model proposed in this study has higher prediction accuracy, improved fitting effect and generalization ability compared with other models. These properties indicate the superiority of the decomposition ensemble model and provides a theoretical and technical basis for prediction of air pollution and ecosystem restoration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
Mayeleven发布了新的文献求助10
2秒前
深情安青应助亮仔采纳,获得10
3秒前
lkm完成签到,获得积分10
3秒前
七里香完成签到 ,获得积分10
3秒前
6秒前
简单的沛蓝完成签到 ,获得积分10
6秒前
开心的城完成签到,获得积分10
7秒前
xiangtaiduo发布了新的文献求助10
8秒前
9秒前
rita_sun1969完成签到,获得积分10
11秒前
文献完成签到,获得积分10
13秒前
Orange应助等等采纳,获得10
13秒前
iris601完成签到,获得积分10
14秒前
白子双完成签到,获得积分10
14秒前
Selenge发布了新的文献求助10
14秒前
格物致知完成签到,获得积分10
14秒前
十八子完成签到,获得积分10
15秒前
MarvelerYB3完成签到,获得积分10
16秒前
bing完成签到 ,获得积分10
18秒前
慕青应助acs924采纳,获得10
19秒前
蔡从安完成签到,获得积分20
22秒前
TIX完成签到 ,获得积分10
22秒前
小宋完成签到 ,获得积分10
22秒前
zhi完成签到,获得积分10
23秒前
江xiaoyu小鱼完成签到,获得积分10
23秒前
小小雨泪完成签到,获得积分10
23秒前
24秒前
Li完成签到 ,获得积分10
24秒前
赵狗儿完成签到,获得积分10
25秒前
蜡笔小z完成签到 ,获得积分10
26秒前
Mayeleven完成签到,获得积分10
27秒前
xinjiasuki完成签到 ,获得积分10
27秒前
ky幻影发布了新的文献求助10
29秒前
xdy完成签到 ,获得积分10
31秒前
科目三应助wjw采纳,获得10
31秒前
朴素的士晋完成签到 ,获得积分10
31秒前
32秒前
小星星完成签到,获得积分10
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780938
求助须知:如何正确求助?哪些是违规求助? 3326387
关于积分的说明 10227091
捐赠科研通 3041639
什么是DOI,文献DOI怎么找? 1669520
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758734