An AQI decomposition ensemble model based on SSA-LSTM using improved AMSSA-VMD decomposition reconstruction technique

空气质量指数 趋同(经济学) 计算机科学 一般化 算法 残余物 均方误差 希尔伯特-黄变换 人工智能 统计 数学 气象学 经济增长 白噪声 物理 数学分析 经济
作者
Kai Wang,Xinyue Fan,Xiaoyi Yang,Zhongli Zhou
出处
期刊:Environmental Research [Elsevier BV]
卷期号:232: 116365-116365 被引量:26
标识
DOI:10.1016/j.envres.2023.116365
摘要

Air quality index (AQI) is a key index for monitoring air pollution and can be used as guide for ensuring good public health. Accurate AQI prediction allows timely control and management of air pollution. In this study, a new integrated learning model was constructed to predict AQI. A smart reverse learning approach based on AMSSA was utilized to increase the diversity of populations, and an improved AMSSA (IAMSSA) was established. The optimum parameters with penalty factor α and mode number K of VMD were obtained using IAMSSA. The IAMSSA-VMD was used to decompose nonlinear and non-stationary AQI information series into several regular and smooth sub-sequences. The Sparrow Search Algorithm (SSA) was used to determine the optimum LSTM parameters. The results showed that: (1) IAMSSA exhibits faster convergence and higher accuracy and stability using simulation experiments compared with seven conventional optimization algorithms in 12 test functions. (2) IAMSSA-VMD was used to decompose the original air quality data results in multiple uncoupled intrinsic mode function (IMF) components and one residual (RES). An SSA-LSTM model was built for each IMF and one RES component, which effectively extracted the predicted values. (3) LSTM, SSA-LSTM, VMD-LSTM, VMD-SSA-LSTM, AMSSA-VMD-SSA-LSTM, and IAMSSA-VMD-SSA-LSTM models were used for prediction of AQI based on data from three cities (Chengdu, Guangzhou, and Shenyang). IAMSSA-VMD-SSA-LSTM exhibited the optimal prediction performance with MAE, RMSE, MAPE, and R2 of 3.692, 4.909, 6.241, and 0.981, respectively. (4) Generalization outcomes revealed that the IAMSSA-VMD-SSA-LSTM model had optimal generalization ability. In summary, the decomposition ensemble model proposed in this study has higher prediction accuracy, improved fitting effect and generalization ability compared with other models. These properties indicate the superiority of the decomposition ensemble model and provides a theoretical and technical basis for prediction of air pollution and ecosystem restoration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
楚寅完成签到 ,获得积分10
3秒前
瘦瘦的铅笔完成签到 ,获得积分10
4秒前
耍酷寻双完成签到 ,获得积分10
4秒前
超帅柚子完成签到 ,获得积分10
6秒前
Manana完成签到 ,获得积分10
7秒前
殷勤的凝海完成签到 ,获得积分10
8秒前
善良的一手完成签到 ,获得积分10
8秒前
烂漫的煎饼完成签到 ,获得积分10
10秒前
无极完成签到 ,获得积分10
10秒前
CQ完成签到 ,获得积分10
13秒前
婼汐完成签到 ,获得积分10
15秒前
严西完成签到,获得积分10
15秒前
Ander完成签到 ,获得积分10
18秒前
乒坛巨人完成签到 ,获得积分10
20秒前
宗师算个瓢啊完成签到 ,获得积分10
21秒前
Hiram完成签到,获得积分10
23秒前
江莱完成签到,获得积分10
23秒前
失眠的血茗完成签到,获得积分10
25秒前
周全完成签到 ,获得积分10
27秒前
一苇以航完成签到 ,获得积分10
27秒前
奋斗慕凝完成签到 ,获得积分10
31秒前
lisa完成签到 ,获得积分10
32秒前
LioXH完成签到,获得积分10
34秒前
Shengwj完成签到,获得积分10
35秒前
木光完成签到,获得积分10
35秒前
LIUJIE完成签到,获得积分10
36秒前
yiyi完成签到,获得积分10
38秒前
Tina酱完成签到 ,获得积分10
38秒前
拾壹完成签到,获得积分10
40秒前
最棒哒完成签到 ,获得积分10
41秒前
46秒前
poki发布了新的文献求助200
48秒前
奔铂儿钯完成签到,获得积分10
53秒前
加油加油完成签到 ,获得积分10
53秒前
hml123完成签到,获得积分10
58秒前
小庄完成签到 ,获得积分10
59秒前
TGU的小马同学完成签到 ,获得积分10
59秒前
爱科研的小胖子完成签到,获得积分10
1分钟前
2316690509完成签到 ,获得积分10
1分钟前
shxygpz完成签到,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3937920
求助须知:如何正确求助?哪些是违规求助? 3483317
关于积分的说明 11022888
捐赠科研通 3213304
什么是DOI,文献DOI怎么找? 1776151
邀请新用户注册赠送积分活动 862334
科研通“疑难数据库(出版商)”最低求助积分说明 798440