Machine Learning Models for Predicting Monoclonal Antibody Biophysical Properties from Molecular Dynamics Simulations and Deep Learning-Based Surface Descriptors

单克隆抗体 分子动力学 人工智能 深度学习 数量结构-活动关系 计算机科学 机器学习 化学 抗体 生物 计算化学 免疫学
作者
I-En Wu,Lateefat Kalejaye,Pin‐Kuang Lai
出处
期刊:Molecular Pharmaceutics [American Chemical Society]
卷期号:22 (1): 142-153
标识
DOI:10.1021/acs.molpharmaceut.4c00804
摘要

Monoclonal antibodies (mAbs) have found extensive applications and development in treating various diseases. From the pharmaceutical industry's perspective, the journey from the design and development of mAbs to clinical testing and large-scale production is a highly time-consuming and resource-intensive process. During the research and development phase, assessing and optimizing the developability of mAbs is of paramount importance to ensure their success as candidates for therapeutic drugs. The critical factors influencing mAb development are their biophysical properties, such as aggregation propensity, solubility, and viscosity. This study utilized a data set comprising 12 biophysical properties of 137 antibodies from a previous study (Proc Natl Acad Sci USA. 114(5):944-949, 2017). We employed full-length antibody molecular dynamics simulations and machine learning techniques to predict experimental data for these 12 biophysical properties. Additionally, we utilized a newly developed deep learning model called DeepSP, which directly predicts the dynamical and structural properties of spatial aggregation propensity and spatial charge map in different antibody regions from sequences. Our research findings indicate that the machine learning models we developed outperform previous methods in predicting most biophysical properties. Furthermore, the DeepSP model yields similar predictive results compared to molecular dynamic simulations while significantly reducing computational time. The code and parameters are freely available at https://github.com/Lailabcode/AbDev. Also, the webapp, AbDev, for 12 biophysical properties prediction has been developed and provided at https://devpred.onrender.com/AbDev.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
夏惋清完成签到 ,获得积分0
2秒前
学勾巴发布了新的文献求助10
3秒前
li完成签到,获得积分10
4秒前
wmk发布了新的文献求助10
5秒前
小小小新完成签到,获得积分20
7秒前
tyh完成签到,获得积分10
9秒前
梅川秋裤完成签到,获得积分10
10秒前
10秒前
pluto应助小小小新采纳,获得20
11秒前
12秒前
不懈奋进应助lorentzh采纳,获得30
13秒前
stresm完成签到,获得积分10
14秒前
14秒前
橘如发布了新的文献求助10
14秒前
14秒前
孙小雨完成签到,获得积分10
15秒前
小布完成签到 ,获得积分0
15秒前
17秒前
17秒前
玩命的紫南完成签到 ,获得积分10
19秒前
源源发布了新的文献求助20
19秒前
22秒前
忐忑的鱼完成签到,获得积分10
23秒前
23秒前
酷波er应助金鱼咕噜噜luu采纳,获得10
23秒前
缇娜完成签到,获得积分10
23秒前
24秒前
sxy完成签到,获得积分10
24秒前
qiao发布了新的文献求助10
26秒前
27秒前
老实皮皮虾完成签到,获得积分10
27秒前
Twinkle发布了新的文献求助10
28秒前
chenll1988完成签到 ,获得积分10
29秒前
源源完成签到,获得积分10
30秒前
徐晓婧关注了科研通微信公众号
31秒前
lxcy0612发布了新的文献求助10
32秒前
33秒前
36秒前
HopeStar完成签到,获得积分10
36秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801430
求助须知:如何正确求助?哪些是违规求助? 3347140
关于积分的说明 10332081
捐赠科研通 3063446
什么是DOI,文献DOI怎么找? 1681691
邀请新用户注册赠送积分活动 807670
科研通“疑难数据库(出版商)”最低求助积分说明 763843