Utilizing a combination of experimental and machine learning methods to predict and correlate between accelerated and natural aging of CFRP/AL adhesive joints under hygrothermal conditions

材料科学 复合材料 胶粘剂 结构工程 工程类 图层(电子)
作者
Sajjad Karimi,Jianyong Yu
出处
期刊:Polymer Composites [Wiley]
被引量:4
标识
DOI:10.1002/pc.29226
摘要

Abstract This study investigates how carbon fiber reinforced polymer (CFRP)‐to‐aluminum adhesive joints behave under accelerated aging conditions with hygrothermal exposure and compares these findings against naturally aged samples to evaluate material reliability in challenging environments. The CFRP‐to‐aluminum adhesive joints were manufactured and subjected to natural aging for durations ranging from 1 to 3 years with 6‐month intervals, as well as accelerated aging (hygrothermal) for periods ranging from 100 to 1200 h, with intervals of 50 h. Subsequently, the mechanical properties of the joints were evaluated using a three‐point bending test. To forecast natural aging times from accelerated aging data, five machine learning models were utilized: artificial neural network, support vector regression, linear regression, polynomial regression, and random forest regression. Hygrothermal aging significantly degraded the matrix, causing a shift in failure modes from cohesive to mixed types (cohesive, adhesive, and fiber tear failures), leading to a notable decline in bending strength. The study observed a 23.13% strength reduction in samples aged naturally for 3 years and a 24.33% decrease in those subjected to 1000 h of accelerated aging. The random forest regressor demonstrated superior accuracy in predicting natural aging times across different accelerated aging periods. Through the application of machine learning models, this study introduces a novel approach to forecast natural aging durations using data from accelerated aging experiments. This method shows potential for optimizing joints and composite structures, ultimately improving their durability and minimizing the likelihood of failures during operational use. Highlights Studied hygrothermal effects on accelerated aging of carbon fiber reinforced polymer/Aluminum (AL) adhesive joints. Noted strength reduction from hygrothermal aging. Used five machine learning models; random forest regression had the highest accuracy. Analyzed correlation between natural and accelerated aging of dissimilar adhesive joints.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zirong发布了新的文献求助10
1秒前
2秒前
尊敬灵萱发布了新的文献求助10
3秒前
3秒前
123发布了新的文献求助10
4秒前
长江完成签到 ,获得积分10
4秒前
乔达摩完成签到 ,获得积分10
4秒前
5秒前
5秒前
WXT1111完成签到,获得积分10
6秒前
6秒前
Xin发布了新的文献求助10
7秒前
小杨爱学习应助sara采纳,获得10
7秒前
7秒前
土豆完成签到,获得积分10
7秒前
8秒前
1762571452发布了新的文献求助10
9秒前
彘shen完成签到 ,获得积分10
9秒前
小蘑菇应助CiCi采纳,获得10
10秒前
yeah发布了新的文献求助10
11秒前
11秒前
小二郎应助莘莘采纳,获得10
12秒前
香蕉觅云应助哈哈采纳,获得10
12秒前
14秒前
NexusExplorer应助轩辕友安采纳,获得10
15秒前
徐hhh完成签到 ,获得积分10
16秒前
朴素蜡烛完成签到,获得积分10
16秒前
Omega发布了新的文献求助100
16秒前
17秒前
123456发布了新的文献求助10
17秒前
17秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
yang关注了科研通微信公众号
18秒前
wh2740应助1762571452采纳,获得10
19秒前
飞翔完成签到,获得积分10
19秒前
烟花应助悦耳人生采纳,获得10
20秒前
小线团黑桃完成签到,获得积分10
20秒前
22秒前
绿蝶发布了新的文献求助10
22秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
全球膝关节骨性关节炎市场研究报告 555
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 540
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3888645
求助须知:如何正确求助?哪些是违规求助? 3430928
关于积分的说明 10772106
捐赠科研通 3156003
什么是DOI,文献DOI怎么找? 1742770
邀请新用户注册赠送积分活动 841390
科研通“疑难数据库(出版商)”最低求助积分说明 785894