清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

How do children adapt their fairness norm? Evidence from computational modeling

规范(哲学) 最后通牒赛局 计算机科学 心理学 认知心理学 社会决策 社会心理学 政治学 法学
作者
Frédérick Morasse,Miriam H. Beauchamp,Élise Désilets,Sebastien Hétu
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:17 (11): e0277508-e0277508 被引量:1
标识
DOI:10.1371/journal.pone.0277508
摘要

Adequate social functioning during childhood requires context-appropriate social decision-making. To make such decisions, children rely on their social norms, conceptualized as cognitive models of shared expectations. Since social norms are dynamic, children must adapt their models of shared expectations and modify their behavior in line with their social environment. This study aimed to investigate children's abilities to use social information to adapt their fairness norm and to identify the computational mechanism governing this process. Thirty children (7-11 years, M = 7.9 SD = 0.85, 11 girls) played the role of Responder in a modified version of the Ultimatum Game-a two-player game based on the fairness norm-in which they had to choose to accept or reject offers from different Proposers. Norm adaptation was assessed by comparing rejection rates before and after a conditioning block in which children received several low offers. Computational models were compared to test which best explains children's behavior during the game. Mean rejection rate decreased significantly after receiving several low offers suggesting that children have the ability to dynamically update their fairness norm and adapt to changing social environments. Model-based analyses suggest that this process involves the computation of norm-prediction errors. This is the first study on norm adaptation capacities in school-aged children that uses a computational approach. Children use implicit social information to adapt their fairness norm to changing environments and this process appears to be supported by a computational mechanism in which norm-prediction errors are used to update norms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xybjt完成签到 ,获得积分10
10秒前
Cosmosurfer完成签到,获得积分10
14秒前
cdercder应助科研通管家采纳,获得10
42秒前
wushuimei完成签到 ,获得积分10
45秒前
无奈慕卉完成签到 ,获得积分10
52秒前
manmanzhong完成签到 ,获得积分10
54秒前
魔幻的妖丽完成签到 ,获得积分10
59秒前
1437594843完成签到 ,获得积分10
1分钟前
QCB完成签到 ,获得积分10
1分钟前
1分钟前
coolplex完成签到 ,获得积分10
1分钟前
Yx完成签到,获得积分10
1分钟前
你的笑慌乱了我的骄傲完成签到 ,获得积分10
1分钟前
happyboy2008完成签到 ,获得积分10
1分钟前
大模型应助iwsaml采纳,获得10
2分钟前
2分钟前
如意听安发布了新的文献求助10
2分钟前
2分钟前
iwsaml发布了新的文献求助10
2分钟前
如意听安完成签到,获得积分10
2分钟前
cdercder应助科研通管家采纳,获得10
2分钟前
沙海沉戈完成签到,获得积分0
2分钟前
2分钟前
Hisa发布了新的文献求助30
2分钟前
隐形曼青应助如意听安采纳,获得10
2分钟前
善学以致用应助iwsaml采纳,获得10
3分钟前
yingzaifeixiang完成签到 ,获得积分10
3分钟前
笨笨完成签到 ,获得积分10
3分钟前
扶我起来写论文完成签到 ,获得积分10
3分钟前
TGU的小马同学完成签到 ,获得积分10
3分钟前
同學你該吃藥了完成签到 ,获得积分10
3分钟前
小美酱完成签到 ,获得积分0
3分钟前
Hisa完成签到,获得积分10
3分钟前
善学以致用应助豆⑧采纳,获得10
3分钟前
3分钟前
豆⑧发布了新的文献求助10
3分钟前
123完成签到 ,获得积分10
4分钟前
豆⑧完成签到,获得积分10
4分钟前
lezard完成签到,获得积分10
4分钟前
西山菩提完成签到,获得积分10
4分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780865
求助须知:如何正确求助?哪些是违规求助? 3326349
关于积分的说明 10226647
捐赠科研通 3041524
什么是DOI,文献DOI怎么找? 1669502
邀请新用户注册赠送积分活动 799068
科研通“疑难数据库(出版商)”最低求助积分说明 758732