CT-Based Deep Learning Model for Predicting Local Recurrence-Free Survival in Esophageal Squamous Cell Carcinoma Patients Received Concurrent Chemo-Radiotherapy: A Multicenter Study

医学 食管鳞状细胞癌 深度学习 放射治疗 无线电技术 食管癌 癌症 肿瘤科 内科学 放射科 人工智能 计算机科学
作者
J. Gong,W. Zhang,W. Huang,Y. Liao,Y. Yin,M. Shi,W. Qin,L. Zhao
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:114 (3): S121-S122
标识
DOI:10.1016/j.ijrobp.2022.07.566
摘要

Purpose/Objective(s)

For esophageal squamous cell carcinomas (ESCC) patients received concurrent chemo-radiotherapy (CCRT), local recurrence is the most common failure pattern and reliable markers for prognosis are lacking. Previous studies have demonstrated the predictive role of traditional radiomics features for prediction of local recurrence-free survival (LRFS) in ESCC. Nevertheless, traditional radiomics based on human-defined handcrafted features may not fully characterize tumor heterogeneity. Some studies have provided evidence that deep learning with advantages in voxel analysis could provide remarkable performance. This study aims to establish and validate a deep learning model for predicting LRFS in ESCC patients received CCRT.

Materials/Methods

We retrospectively included 302 patients from Xijing Hospital and randomly divided them into training set (201) and internal validation set (101) according to 2:1. 95 patients from Tianjin Cancer Hospital and Shandong Cancer Hospital were included as the external validation set. All patients underwent a contrast-enhanced computed tomography (CE-CT) scan before CCRT and were followed up for more than 24 months after CCRT. The deep learning model was developed by using 3D-Densenet deep learning architecture. Manually segmented tumors based on CE-CT were used as model input, LRFS was the prediction target. The deep learning signature was built using the deep-score output by the model.

Results

The median follow-up time of all patients was 26.77 months and 257 of 397 patients (64.74%) were confirmed local recurrence or death during the follow-up period. The deep learning model for prediction of LRFS in ESCC patients received CCRT showed good prognostic performance, with a C-index of 0.7337 (95% CI: 0.6800–0.7874) in the training set, which was validated in the internal (0.7203 [95% CI: 0.6450–0.7957]) and external validation (0.7167 [95% CI: 0.6416–0.7918]) sets, respectively. Kaplan-Meier survival analysis showed that the median of deep-score (-0.06) could stratify patients into high and low-risk groups for different LRFS. The low-risk group with the lower deep-score had a significantly higher LRFS than that of the high-risk group with a high deep-score (2-year LRFS 71.1% vs 33.0%, p<0.0001) in the training set. The result was validated in the internal (2-year LRFS 58.8% vs34.8%, p<0.01) and external validation (2-year LRFS 61.9% vs 22.4%, p<0.0001) sets, respectively.

Conclusion

Deep learning signature can be used as a non-invasive radiomics marker to predict LRFS in ESCC patients received CCRT. This is the first multicenter-based study using deep learning to predict local recurrence in esophageal cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Vera完成签到,获得积分10
2秒前
苏打发布了新的文献求助10
2秒前
木木完成签到,获得积分20
3秒前
情怀应助wxy采纳,获得10
5秒前
5秒前
6秒前
6秒前
酷波er应助南歌子采纳,获得10
7秒前
sgkyy发布了新的文献求助10
7秒前
兔子发布了新的文献求助10
8秒前
8秒前
psybrain9527完成签到,获得积分10
8秒前
Susu发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
12秒前
kin发布了新的文献求助10
12秒前
jwjx完成签到,获得积分20
13秒前
13秒前
量子星尘发布了新的文献求助10
15秒前
silence完成签到,获得积分10
15秒前
树池发布了新的文献求助10
15秒前
不能当饭吃完成签到,获得积分10
15秒前
万能图书馆应助WT采纳,获得10
15秒前
16秒前
郑建辉发布了新的文献求助10
16秒前
iNk应助Ken采纳,获得10
16秒前
珂珂发布了新的文献求助10
16秒前
我是老大应助jwjx采纳,获得10
17秒前
17秒前
SciGPT应助科研通管家采纳,获得10
17秒前
深情安青应助科研通管家采纳,获得10
17秒前
大个应助科研通管家采纳,获得10
18秒前
18秒前
乐乐应助科研通管家采纳,获得10
18秒前
打打应助科研通管家采纳,获得10
18秒前
李健应助科研通管家采纳,获得10
18秒前
18秒前
共享精神应助科研通管家采纳,获得10
18秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864497
求助须知:如何正确求助?哪些是违规求助? 3406903
关于积分的说明 10651703
捐赠科研通 3130813
什么是DOI,文献DOI怎么找? 1726640
邀请新用户注册赠送积分活动 831917
科研通“疑难数据库(出版商)”最低求助积分说明 780051