Identification of Key Genes and Related Drugs of Adrenocortical Carcinoma by Integrated Bioinformatics Analysis

肾上腺皮质癌 鉴定(生物学) 基因 生物信息学 内科学 钥匙(锁) 内分泌学 计算生物学 医学 生物 肿瘤科 癌症研究 遗传学 生态学 植物
作者
Jian-bin Wei,Xiaochun Zeng,Kui-rong Ji,Lingyi Zhang,Xiaomin Chen
出处
期刊:Hormone and Metabolic Research [Thieme Medical Publishers (Germany)]
卷期号:56 (08): 593-603 被引量:1
标识
DOI:10.1055/a-2209-0771
摘要

Adrenocortical carcinoma (ACC) is a malignant carcinoma with an extremely poor prognosis, and its pathogenesis remains to be understood to date, necessitating further investigation. This study aims to discover biomarkers and potential therapeutic agents for ACC through bioinformatics, enhancing clinical diagnosis and treatment strategies. Differentially expressed genes (DEGs) between ACC and normal adrenal cortex were screened out from the GSE19750 and GSE90713 datasets available in the GEO database. An online Venn diagram tool was utilized to identify the common DEGs between the two datasets. The identified DEGs were subjected to functional assessment, pathway enrichment, and identification of hub genes by performing the protein-protein interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The differences in the expressions of hub genes between ACC and normal adrenal cortex were validated at the GEPIA2 website, and the association of these genes with the overall patient survival was also assessed. Finally, on the QuartataWeb website, drugs related to the identified hub genes were determined. A total of 114 DEGs, 10 hub genes, and 69 known drugs that could interact with these genes were identified. The GO and KEGG analyses revealed a close association of the identified DEGs with cellular signal transduction. The 10 hub genes identified were overexpressed in ACC, in addition to being significantly associated with adverse prognosis in ACC. Three genes and the associated known drugs were identified as potential targets for ACC treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助科研通管家采纳,获得10
刚刚
不倦应助科研通管家采纳,获得10
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
完美世界应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
科研通AI5应助科研通管家采纳,获得30
刚刚
刚刚
惠_____完成签到 ,获得积分10
1秒前
撒旦撒完成签到,获得积分10
3秒前
YU发布了新的文献求助10
3秒前
小蘑菇应助惠飞薇采纳,获得10
4秒前
lili完成签到 ,获得积分10
7秒前
9秒前
mjicm完成签到,获得积分10
10秒前
思源应助科研小李采纳,获得20
12秒前
Ade完成签到,获得积分10
12秒前
徐茂瑜完成签到 ,获得积分10
12秒前
skyleon发布了新的文献求助10
13秒前
啵妞完成签到 ,获得积分10
15秒前
20230321完成签到,获得积分10
17秒前
YU完成签到,获得积分10
17秒前
Ch完成签到 ,获得积分10
17秒前
17秒前
run发布了新的文献求助10
22秒前
小young完成签到 ,获得积分10
22秒前
科研通AI2S应助CYY采纳,获得10
23秒前
张zzz完成签到,获得积分10
23秒前
独特乘云完成签到,获得积分10
26秒前
L1完成签到 ,获得积分10
26秒前
烟花应助安详的惜梦采纳,获得10
27秒前
科研通AI5应助大力丹琴采纳,获得30
32秒前
桐桐应助惠飞薇采纳,获得10
33秒前
CKK完成签到,获得积分10
33秒前
苹果完成签到,获得积分10
35秒前
36秒前
善良身影完成签到,获得积分10
37秒前
39秒前
上官若男应助dddd采纳,获得10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779459
求助须知:如何正确求助?哪些是违规求助? 3324973
关于积分的说明 10220692
捐赠科研通 3040129
什么是DOI,文献DOI怎么找? 1668576
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758522