Dynamic constrained evolutionary optimization based on deep Q-network

计算机科学 人口 趋同(经济学) 数学优化 数学 人口学 社会学 经济 经济增长
作者
Zhengping Liang,Ruitai Yang,Jigang Wang,Ling Liu,Xiaoliang Ma,Zexuan Zhu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:249: 123592-123592 被引量:4
标识
DOI:10.1016/j.eswa.2024.123592
摘要

Dynamic constrained optimization problems (DCOPs) are common and important optimization problems in real-world, which have great difficulty to solve. Dynamic constrained evolutionary algorithms (DCEAs) are widely used methods for solving DCOPs. However, existing DCEAs often struggle with convergence, particularly for DCOPs with drastic dynamic changes or intricate constraints. To address this issue, this paper proposes a novel DCEA called DCEA-DQN, which leverages the powerful perception and decision-making capabilities of Deep Q-Network (DQN). DCEA-DQN integrates two DQNs to enhance its performance. The first DQN is designed to adaptively respond to dynamic changes, enabling effective handling of DCOPs with various types and degrees of changes. It provides a high-quality re-initialized population for subsequent static optimization, resulting in faster and improved convergence. The second DQN is introduced to guide the mutation direction during offspring generation. It steers the population towards better feasible regions or directs it towards the optimal individual within the current feasible region. Moreover, a penalty mechanism is employed to handle constraints during offspring generation.To evaluate the performance of DCEA-DQN, comprehensive empirical studies are conducted using a new test suite called C-GMPB and a dynamic flexible job-shop scheduling problem. The experimental results, using two commonly used metrics EB and EO in the field of DCOPs, demonstrate that DCEA-DQN outperforms six state-of-the-art DCEAs and achieved optimal performance on 80% and 75% of all 24 test problems, respectively. The source code for DCEA-DQN is available at https://github.com/CIA-SZU/YRT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卫卫完成签到 ,获得积分10
刚刚
sun完成签到 ,获得积分10
1秒前
科研通AI2S应助Willow采纳,获得10
1秒前
科研通AI2S应助WHL采纳,获得10
1秒前
十一完成签到 ,获得积分10
2秒前
3秒前
罗实完成签到 ,获得积分10
3秒前
3秒前
莫愁完成签到,获得积分10
4秒前
静心完成签到,获得积分10
4秒前
杨涵完成签到 ,获得积分10
4秒前
oO完成签到 ,获得积分10
5秒前
贪玩的万仇完成签到,获得积分10
5秒前
gfdsh发布了新的文献求助10
5秒前
wyx完成签到,获得积分10
5秒前
Conner完成签到 ,获得积分10
6秒前
Allen完成签到,获得积分10
6秒前
王科研完成签到,获得积分10
6秒前
Owen应助我行我素采纳,获得10
6秒前
花痴的慕蕊完成签到,获得积分10
7秒前
M20小陈发布了新的文献求助10
7秒前
胡图图完成签到,获得积分10
7秒前
xiaofeizhu发布了新的文献求助10
7秒前
7秒前
Szj完成签到,获得积分10
7秒前
8秒前
一托托完成签到,获得积分10
8秒前
8秒前
8秒前
迷你的冰旋完成签到,获得积分10
9秒前
hao完成签到,获得积分10
9秒前
Venus完成签到,获得积分10
9秒前
可乐加冰完成签到,获得积分10
10秒前
zht完成签到,获得积分10
11秒前
活力亦瑶完成签到,获得积分10
11秒前
张晓晓完成签到,获得积分10
11秒前
Nick应助liuqiuyue采纳,获得30
11秒前
山山而川应助hkh采纳,获得10
11秒前
小蘑菇应助hkh采纳,获得10
11秒前
顾矜应助hkh采纳,获得10
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795743
求助须知:如何正确求助?哪些是违规求助? 3340790
关于积分的说明 10301851
捐赠科研通 3057307
什么是DOI,文献DOI怎么找? 1677625
邀请新用户注册赠送积分活动 805512
科研通“疑难数据库(出版商)”最低求助积分说明 762642