Machine learning models developed and internally validated for predicting chronicity in pediatric immune thrombocytopenia

可解释性 随机森林 逻辑回归 接收机工作特性 医学 机器学习 支持向量机 人工智能 儿科 内科学 计算机科学
作者
Jingyao Ma,Chang Cui,Yongqiang Tang,Yu Hu,Shuyue Dong,Jialü Zhang,Xingjuan Xie,Jinxi Meng,Zhifa Wang,Wensheng Zhang,Zhenping Chen,Runhui Wu
出处
期刊:Journal of Thrombosis and Haemostasis [Elsevier BV]
卷期号:22 (4): 1167-1178 被引量:1
标识
DOI:10.1016/j.jtha.2023.12.006
摘要

Abstract

Background

Primary immune thrombocytopenia (ITP) in children is typically self-limiting; however, 20–30% of patients may experience prolonged thrombocytopenia lasting over a year. The challenge is predicting chronicity to ensure personalized treatment approaches.

Objective

To address this issue, we developed and internally validated four machine learning (ML) models using demographic and immunological characteristics to predict the likelihood of chronicity.

Methods

The present study was conducted at Beijing Children's Hospital from June 2018 to December 2021, aiming to develop predictive models for determining the chronicity of pediatric ITP. Four ML models, based on logistic regression classifier, random forest classifier, eXtreme Gradient Boosting (XGBoost), and support vector machine, were employed. These models utilized a set of 16 variables including 14 immunological and 2 demographic predictors. The performance evaluation criteria included prediction accuracy, precision, recall, F1 score, and area under the ROC curve (AUC).

Results

Data were collected from 662 patients who were randomly assigned to either a training dataset or a testing dataset using a random number generator. Among them, 26.5% had chronic disease. All models performed well with AUC values ranging from 0.81 to 0.84, and XGBoost was selected for its highest AUC score and interpretability in constructing the predictive model. Age, Th17, Th17/Treg, TH1, and DNT were identified as significant predictors by the XGBoost algorithm.

Conclusion

We developed a precise predictive model for chronicity in pediatric ITP using ML during the initial phase. The XGBoost model achieved high predictive accuracy by utilizing individual patient clinical parameters and demonstrated commendable interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熊巴巴完成签到 ,获得积分10
1秒前
2秒前
2秒前
想发sci完成签到,获得积分10
2秒前
王SQ完成签到 ,获得积分10
3秒前
AmyHu完成签到,获得积分10
3秒前
栗荔完成签到 ,获得积分10
4秒前
害羞的书芹完成签到,获得积分10
5秒前
无敌小邓历险记完成签到 ,获得积分20
6秒前
6秒前
李爱国应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
大个应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
科目三应助lanadalray采纳,获得10
11秒前
sunrise_99完成签到,获得积分10
12秒前
竹筏过海应助星空采纳,获得30
12秒前
甜甜恋风完成签到,获得积分10
14秒前
16秒前
深情安青应助zky采纳,获得10
17秒前
小蘑菇应助未知数采纳,获得10
18秒前
gnufgg完成签到,获得积分10
19秒前
烟花应助闫昕采纳,获得10
20秒前
just_cook完成签到,获得积分10
20秒前
甜甜恋风发布了新的文献求助10
21秒前
Karry发布了新的文献求助10
22秒前
22秒前
热情的元芹完成签到,获得积分10
22秒前
25秒前
dong东包发布了新的文献求助10
26秒前
26秒前
小破网完成签到 ,获得积分0
27秒前
27秒前
Virgil完成签到 ,获得积分10
27秒前
Ellen完成签到,获得积分10
27秒前
趣多多发布了新的文献求助10
29秒前
爆米花应助dong东包采纳,获得10
29秒前
30秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782905
求助须知:如何正确求助?哪些是违规求助? 3328212
关于积分的说明 10235338
捐赠科研通 3043308
什么是DOI,文献DOI怎么找? 1670468
邀请新用户注册赠送积分活动 799719
科研通“疑难数据库(出版商)”最低求助积分说明 759033