力谱学
严重急性呼吸综合征冠状病毒2型(SARS-CoV-2)
受体
病毒
2019年冠状病毒病(COVID-19)
病毒学
大流行
生物
分子动力学
计算生物学
化学
分子
医学
遗传学
疾病
传染病(医学专业)
有机化学
计算化学
病理
作者
Ankita Ray,Tran Thi Minh Thu,Rita dos Santos Natividade,Rodrigo A. Moreira,Joshua D. Simpson,Danahé Mohammed,Melanie Koehler,Simon J. L. Petitjean,Qingrong Zhang,Fabrice Bureau,Laurent Gillet,Adolfo B. Poma,David Alsteens
出处
期刊:ACS Nanoscience Au
[American Chemical Society]
日期:2024-03-08
卷期号:4 (2): 136-145
被引量:9
标识
DOI:10.1021/acsnanoscienceau.3c00060
摘要
The SARS-CoV-2 pandemic spurred numerous research endeavors to comprehend the virus and mitigate its global severity. Understanding the binding interface between the virus and human receptors is pivotal to these efforts and paramount to curbing infection and transmission. Here we employ atomic force microscopy and steered molecular dynamics simulation to explore SARS-CoV-2 receptor binding domain (RBD) variants and angiotensin-converting enzyme 2 (ACE2), examining the impact of mutations at key residues upon binding affinity. Our results show that the Omicron and Delta variants possess strengthened binding affinity in comparison to the Mu variant. Further, using sera from individuals either vaccinated or with acquired immunity following Delta strain infection, we assess the impact of immunity upon variant RBD/ACE2 complex formation. Single-molecule force spectroscopy analysis suggests that vaccination before infection may provide stronger protection across variants. These results underscore the need to monitor antigenic changes in order to continue developing innovative and effective SARS-CoV-2 abrogation strategies.
科研通智能强力驱动
Strongly Powered by AbleSci AI