Evidence-based uncertainty-aware semi-supervised medical image segmentation

计算机科学 人工智能 机器学习 图像分割 分割 计算机视觉 图像(数学) 模式识别(心理学)
作者
Ying-Yu Chen,Ziyuan Yang,Chenyu Shen,Zhiwen Wang,Zhongzhou Zhang,Yang Qin,Xin Wei,Jingfeng Lu,Yan Liu,Yi Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:170: 108004-108004 被引量:6
标识
DOI:10.1016/j.compbiomed.2024.108004
摘要

Semi-Supervised Learning (SSL) has demonstrated great potential to reduce the dependence on a large set of annotated data, which is challenging to collect in clinical practice. One of the most important SSL methods is to generate pseudo labels from the unlabeled data using a network model trained with labeled data, which will inevitably introduce false pseudo labels into the training process and potentially jeopardize performance. To address this issue, uncertainty-aware methods have emerged as a promising solution and have gained considerable attention recently. However, current uncertainty-aware methods usually face the dilemma of balancing the additional computational cost, uncertainty estimation accuracy, and theoretical basis in a unified training paradigm. To address this issue, we propose to integrate the Dempster–Shafer Theory of Evidence (DST) into SSL-based medical image segmentation, dubbed EVidential Inference Learning (EVIL). EVIL performs as a novel consistency regularization-based training paradigm, which enforces consistency on predictions perturbed by two networks with different parameters to enhance generalization Additionally, EVIL provides a theoretically assured solution for precise uncertainty quantification within a single forward pass. By discarding highly unreliable pseudo labels after uncertainty estimation, trustworthy pseudo labels can be generated and incorporated into subsequent model training. The experimental results demonstrate that the proposed approach performs competitively when benchmarked against several state-of-the-art methods on public datasets, i.e., ACDC, MM-WHS, and MonuSeg. The code can be found at https://github.com/CYYukio/EVidential-Inference-Learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
Tizzy完成签到,获得积分10
7秒前
8秒前
8秒前
喜悦香薇完成签到,获得积分10
10秒前
CipherSage应助坚定芷烟采纳,获得10
11秒前
昏睡的白桃完成签到,获得积分10
11秒前
聪慧芷巧发布了新的文献求助30
12秒前
naiyantang发布了新的文献求助10
13秒前
慕青应助傲娇如天采纳,获得10
13秒前
橙果果完成签到,获得积分10
14秒前
鱼蛋丸子完成签到,获得积分10
15秒前
spp完成签到 ,获得积分0
17秒前
能干的丸子完成签到,获得积分10
17秒前
会撒娇的舞蹈完成签到,获得积分20
20秒前
领导范儿应助天歌大彗星采纳,获得10
21秒前
卡尔拉完成签到,获得积分10
21秒前
墨小杭完成签到,获得积分10
21秒前
22秒前
独特的凝云完成签到 ,获得积分10
22秒前
23秒前
24秒前
傲娇如天完成签到,获得积分10
25秒前
昀宇完成签到 ,获得积分10
26秒前
傲娇如天发布了新的文献求助10
27秒前
zhzh0618完成签到 ,获得积分10
28秒前
seven完成签到,获得积分10
29秒前
平淡凡柔发布了新的文献求助10
29秒前
ccc完成签到,获得积分10
30秒前
vvSirius完成签到,获得积分10
31秒前
天地一体完成签到,获得积分10
33秒前
英姑应助huxiaomin采纳,获得10
35秒前
flash给flash的求助进行了留言
35秒前
材料人完成签到,获得积分10
35秒前
Jasper应助平淡凡柔采纳,获得30
35秒前
坦率的夜玉完成签到,获得积分10
36秒前
万能图书馆应助曹超国采纳,获得10
38秒前
YL完成签到 ,获得积分10
39秒前
lucky完成签到 ,获得积分10
39秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Canon of Insolation and the Ice-age Problem 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3900216
求助须知:如何正确求助?哪些是违规求助? 3444962
关于积分的说明 10837487
捐赠科研通 3170120
什么是DOI,文献DOI怎么找? 1751495
邀请新用户注册赠送积分活动 846722
科研通“疑难数据库(出版商)”最低求助积分说明 789363