Mode interpretation and force prediction surrogate model of flow past twin cylinders via machine learning integrated with high-order dynamic mode decomposition

动态模态分解 物理 Lift(数据挖掘) 机械 唤醒 流量(数学) 替代模型 涡流 非线性系统 算法 计算机科学 机器学习 量子力学
作者
Tingting Liu,Lei Zhou,Hui Tang,Hongfu Zhang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (2) 被引量:7
标识
DOI:10.1063/5.0138338
摘要

Understanding and modeling the flow field and force development over time for flow past twin tandem cylinders can promote insight into underlying physical laws and efficient engineering design. In this study, a new surrogate model, based on a convolutional neural network and higher-order dynamic mode decomposition (CNN-HODMD), is proposed to predict the unsteady fluid force time history specifically for twin tandem cylinders. Sampling data are selected from a two-dimensional direct numerical simulation flow solution over twin tandem cylinders at different aspect ratios (AR = 0.3–4), gap spacing (L* = 1–8), and Re = 150. To promote insight into underlying physical mechanisms and better understand the surrogate model, the HODMD analysis is further employed to decompose the flow field at selected typical flow regimes. Results indicate that CNN-HODMD performs well in discovering a suitable low-dimensional linear representation for nonlinear dynamic systems via dimensionality augment and reduction technique. Therefore, the CNN-HODMD surrogate model can efficiently predict the time history of lift force at various AR and L* within 5% error. Moreover, fluid forces, vorticity field, and power spectrum density of twin cylinders are investigated to explore the physical properties. It was found three flow regimes (i.e., overshoot, reattachment, and coshedding) and two wake vortex patterns (i.e., 2S and P). It was found the lift force of the upstream cylinder for AR < 1 is more sensitive to the gap increment, while the result is reversed for the downstream cylinder. It was found that the fluctuating component of the wake of cylinders decreases with increasing AR at L* = 1. Moreover, flow transition was observed at L* = 4.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
刚刚
tjxhtj完成签到,获得积分10
1秒前
野性的小懒虫完成签到,获得积分10
1秒前
1秒前
VanessaW发布了新的文献求助10
1秒前
小赵完成签到,获得积分10
1秒前
max发布了新的文献求助10
2秒前
2秒前
pluto应助hanyingwang采纳,获得10
3秒前
3秒前
3秒前
李某发布了新的文献求助10
3秒前
3秒前
3秒前
李健应助monster采纳,获得10
4秒前
刘一安发布了新的文献求助10
4秒前
科研通AI6应助oyfff采纳,获得10
4秒前
上官若男应助ZYC采纳,获得10
4秒前
丘比特应助啊啊啊采纳,获得10
5秒前
5秒前
勿忘完成签到,获得积分10
5秒前
6秒前
Akim应助psycan采纳,获得30
6秒前
6秒前
明理背包完成签到,获得积分10
6秒前
6秒前
哒咩咩完成签到 ,获得积分20
6秒前
稳重元菱发布了新的文献求助10
6秒前
二十又澪完成签到,获得积分10
6秒前
熬夜才有的双眼皮完成签到,获得积分20
6秒前
7秒前
Lucas应助王一一采纳,获得10
7秒前
科研通AI6应助bbbao采纳,获得10
7秒前
Lucas应助小玉儿采纳,获得10
7秒前
Ava应助山鱼人采纳,获得10
7秒前
kuba发布了新的文献求助10
8秒前
8秒前
wang发布了新的文献求助10
8秒前
levan发布了新的文献求助10
8秒前
lililiiii完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
按地区划分的1,091个公共养老金档案列表 801
Work, Vacation and Well-being 500
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Rural Geographies People, Place and the Countryside 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5410713
求助须知:如何正确求助?哪些是违规求助? 4528079
关于积分的说明 14114318
捐赠科研通 4442786
什么是DOI,文献DOI怎么找? 2438020
邀请新用户注册赠送积分活动 1430164
关于科研通互助平台的介绍 1408008