已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Mapping the Porous and Chemical Structure–Function Relationships of Trace CH3I Capture by Metal–Organic Frameworks using Machine Learning

金属有机骨架 跟踪(心理语言学) 聚类分析 功能(生物学) 计算机科学 无监督学习 人工智能 机器学习 化学 语言学 进化生物学 生物 哲学 吸附 有机化学
作者
Xiaoyu Wu,Yu Che,Linjiang Chen,Eric Amigues,Ruiyao Wang,Jinghui He,Huilong Dong,Lifeng Ding
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (41): 47209-47221 被引量:12
标识
DOI:10.1021/acsami.2c10861
摘要

Large-scale computational screening has become an indispensable tool for functional materials discovery. It, however, remains a challenge to adequately interrogate the large amount of data generated by a screening study. Here, we computationally screened 1087 metal-organic frameworks (MOFs), from the CoRE MOF 2014 database, for capturing trace amounts (300 ppmv) of methyl iodide (CH3I); as a primary representative of organic iodides, CH3129I is one of the most difficult radioactive contaminants to separate. Furthermore, we demonstrate a simple and general approach for mapping and interrogating the high-dimensional structure-function data obtained by high-throughput screening; this involves learning two-dimensional embeddings of the high-dimensional data by applying unsupervised learning to encoded structural and chemical features of MOFs. The resulting various porous and chemical structure-function maps are human-interpretable, revealing not only top-performing MOFs but also complex structure-function correlations that are hidden when inspecting individual MOF features. These maps also alleviate the need of laborious visual inspection of a large number of MOFs by clustering similar MOFs, per the encoding features, into defined regions on the map. We also show that these structure-function maps are amenable to supervised classification of the performances of MOFs for trace CH3I capture. We further show that the machine-learning models trained on the 1087 CoRE MOFs can be used to predict an unseen set of 250 MOFs randomly selected from a different MOF database, achieving high prediction accuracies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
3秒前
Mingda发布了新的文献求助10
3秒前
3秒前
李健的小迷弟应助库里强采纳,获得10
3秒前
农四师发布了新的文献求助10
6秒前
周周完成签到,获得积分10
7秒前
amwlsai发布了新的文献求助10
7秒前
victor28发布了新的文献求助10
8秒前
9秒前
okk完成签到 ,获得积分10
9秒前
12秒前
激情的凌青完成签到 ,获得积分10
16秒前
火翟丰丰山心完成签到,获得积分10
17秒前
Jasper应助jjyycc采纳,获得10
17秒前
GQ完成签到,获得积分10
17秒前
白茶发布了新的文献求助10
22秒前
22秒前
良辰应助morena采纳,获得10
23秒前
科研通AI5应助fenfen好学采纳,获得10
23秒前
24秒前
匪石发布了新的文献求助10
27秒前
Lucas应助张千鸿采纳,获得10
28秒前
今后应助勤恳的访梦采纳,获得10
31秒前
jjyycc发布了新的文献求助10
31秒前
枕边人完成签到 ,获得积分10
34秒前
35秒前
帅气寒香完成签到 ,获得积分10
37秒前
媛肖完成签到 ,获得积分10
38秒前
亭2007完成签到 ,获得积分10
38秒前
hangongyishan完成签到,获得积分10
39秒前
小蘑菇应助lxlcx采纳,获得10
39秒前
ning完成签到,获得积分10
39秒前
长度2到完成签到,获得积分10
40秒前
40秒前
41秒前
42秒前
酷波er应助Lulu采纳,获得10
43秒前
43秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Genome Editing and Engineering: From TALENs, ZFNs and CRISPRs to Molecular Surgery 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
幼儿游戏与指导(第二版) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833490
求助须知:如何正确求助?哪些是违规求助? 3375943
关于积分的说明 10491212
捐赠科研通 3095520
什么是DOI,文献DOI怎么找? 1704423
邀请新用户注册赠送积分活动 820037
科研通“疑难数据库(出版商)”最低求助积分说明 771721