Confidence-aware multi-modality learning for eye disease screening

模态(人机交互) 人工智能 计算机科学 置信区间 机器学习 医学 内科学
作者
Ke Zou,Tian Lin,Zongbo Han,Meng Wang,Xuedong Yuan,Haoyu Chen,Changqing Zhang,Xiaojing Shen,Huazhu Fu
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:96: 103214-103214 被引量:3
标识
DOI:10.1016/j.media.2024.103214
摘要

Multi-modal ophthalmic image classification plays a key role in diagnosing eye diseases, as it integrates information from different sources to complement their respective performances. However, recent improvements have mainly focused on accuracy, often neglecting the importance of confidence and robustness in predictions for diverse modalities. In this study, we propose a novel multi-modality evidential fusion pipeline for eye disease screening. It provides a measure of confidence for each modality and elegantly integrates the multi-modality information using a multi-distribution fusion perspective. Specifically, our method first utilizes normal inverse gamma prior distributions over pre-trained models to learn both aleatoric and epistemic uncertainty for uni-modality. Then, the normal inverse gamma distribution is analyzed as the Student's t distribution. Furthermore, within a confidence-aware fusion framework, we propose a mixture of Student's t distributions to effectively integrate different modalities, imparting the model with heavy-tailed properties and enhancing its robustness and reliability. More importantly, the confidence-aware multi-modality ranking regularization term induces the model to more reasonably rank the noisy single-modal and fused-modal confidence, leading to improved reliability and accuracy. Experimental results on both public and internal datasets demonstrate that our model excels in robustness, particularly in challenging scenarios involving Gaussian noise and modality missing conditions. Moreover, our model exhibits strong generalization capabilities to out-of-distribution data, underscoring its potential as a promising solution for multimodal eye disease screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
cccr02完成签到 ,获得积分10
1秒前
haha完成签到,获得积分10
1秒前
自由秋荷发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
哈哈应助Una采纳,获得10
3秒前
嘻哈完成签到 ,获得积分10
3秒前
王献杰完成签到,获得积分10
3秒前
微笑的手机完成签到 ,获得积分10
4秒前
123完成签到,获得积分10
4秒前
Yolo完成签到,获得积分10
4秒前
领导范儿应助遇见采纳,获得10
4秒前
怡然若雁完成签到,获得积分10
4秒前
小菜发布了新的文献求助10
5秒前
lsybf完成签到,获得积分10
5秒前
Volcano完成签到 ,获得积分10
6秒前
李健的小迷弟应助入暖采纳,获得10
6秒前
6秒前
搜集达人应助Zxxz采纳,获得10
6秒前
曾无忧应助科研小菜鸡采纳,获得10
6秒前
7秒前
韩伟发布了新的文献求助10
8秒前
muzi发布了新的文献求助20
8秒前
小魏不学无术完成签到,获得积分10
8秒前
JamesPei应助儒雅沛蓝采纳,获得10
8秒前
rapamycin完成签到,获得积分10
9秒前
稳重的宛丝完成签到 ,获得积分10
9秒前
袋袋完成签到,获得积分20
9秒前
Owen应助chestnut灬采纳,获得10
10秒前
韶邑完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
毛毛哦啊完成签到,获得积分10
11秒前
天外来物发布了新的文献求助10
11秒前
期期完成签到,获得积分10
11秒前
zhangzy完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
(The) Founding Fathers of America 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4459224
求助须知:如何正确求助?哪些是违规求助? 3923520
关于积分的说明 12174124
捐赠科研通 3575286
什么是DOI,文献DOI怎么找? 1964122
邀请新用户注册赠送积分活动 1003084
科研通“疑难数据库(出版商)”最低求助积分说明 897803