亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Confidence-aware multi-modality learning for eye disease screening

模态(人机交互) 人工智能 计算机科学 置信区间 机器学习 医学 内科学
作者
Ke Zou,Tian Lin,Zongbo Han,Meng Wang,Xuedong Yuan,Haoyu Chen,Changqing Zhang,Xiaojing Shen,Huazhu Fu
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:96: 103214-103214
标识
DOI:10.1016/j.media.2024.103214
摘要

Multi-modal ophthalmic image classification plays a key role in diagnosing eye diseases, as it integrates information from different sources to complement their respective performances. However, recent improvements have mainly focused on accuracy, often neglecting the importance of confidence and robustness in predictions for diverse modalities. In this study, we propose a novel multi-modality evidential fusion pipeline for eye disease screening. It provides a measure of confidence for each modality and elegantly integrates the multi-modality information using a multi-distribution fusion perspective. Specifically, our method first utilizes normal inverse gamma prior distributions over pre-trained models to learn both aleatoric and epistemic uncertainty for uni-modality. Then, the normal inverse gamma distribution is analyzed as the Student's t distribution. Furthermore, within a confidence-aware fusion framework, we propose a mixture of Student's t distributions to effectively integrate different modalities, imparting the model with heavy-tailed properties and enhancing its robustness and reliability. More importantly, the confidence-aware multi-modality ranking regularization term induces the model to more reasonably rank the noisy single-modal and fused-modal confidence, leading to improved reliability and accuracy. Experimental results on both public and internal datasets demonstrate that our model excels in robustness, particularly in challenging scenarios involving Gaussian noise and modality missing conditions. Moreover, our model exhibits strong generalization capabilities to out-of-distribution data, underscoring its potential as a promising solution for multimodal eye disease screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王志航发布了新的文献求助10
4秒前
乐乐应助小小学神采纳,获得20
6秒前
10秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
amengptsd完成签到,获得积分10
20秒前
pojian发布了新的文献求助10
24秒前
27秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
情怀应助科研通管家采纳,获得10
33秒前
英俊的铭应助科研通管家采纳,获得10
33秒前
小小学神发布了新的文献求助20
34秒前
37秒前
喜东东完成签到,获得积分10
39秒前
量子星尘发布了新的文献求助10
43秒前
pojian完成签到,获得积分10
56秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
隐形曼青应助bbdan采纳,获得10
1分钟前
petrichor完成签到 ,获得积分10
1分钟前
1分钟前
文文完成签到,获得积分10
1分钟前
wanci应助被窝哲学家采纳,获得10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
2分钟前
2分钟前
bbdan发布了新的文献求助10
2分钟前
无聊的月饼完成签到 ,获得积分10
2分钟前
2分钟前
zhang完成签到 ,获得积分10
2分钟前
MR_H完成签到,获得积分10
2分钟前
cq220发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
伊笙完成签到 ,获得积分10
2分钟前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Semiconductor devices : pioneering papers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3862401
求助须知:如何正确求助?哪些是违规求助? 3404926
关于积分的说明 10641894
捐赠科研通 3128153
什么是DOI,文献DOI怎么找? 1725147
邀请新用户注册赠送积分活动 830810
科研通“疑难数据库(出版商)”最低求助积分说明 779453