Fault-Tolerant Cubature Kalman Filter for Engineering Estimation Control Systems

控制理论(社会学) 卡尔曼滤波器 滤波器(信号处理) 集合卡尔曼滤波器 扩展卡尔曼滤波器 噪音(视频) 断层(地质) 滤波器设计 计算机科学 数学 统计 人工智能 控制(管理) 地震学 图像(数学) 计算机视觉 地质学
作者
Quanbo Ge,Zhongcheng Ma,Zhenyu Lu,Xiaoliang Feng
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (7): 3943-3953 被引量:1
标识
DOI:10.1109/tcyb.2022.3204532
摘要

The cubature Kalman filter (CKF) overcomes the limitations of the Kalman filter in strong nonlinear systems, which has been widely used in many fields. However, in practical engineering, the abnormal measurement information obtained by the sensor causes the measurement noise covariance to change, which may deteriorate the filtering performance and even cause the filter failure. The fault-tolerant filter can deal with the state estimation problem for the systems with abnormal measurements. The key of the fault-tolerant filter is to forcefully correct filter innovation by using a fading factor. The fault-tolerant filter technology has been extensively applied in many practical systems, but it is still lack of reasonable theoretical analysis. To this end, the measurement noise model is established and the magnitude of the noise deviation is analyzed. The filtering performance under abnormal measurement is analyzed by three mean squared errors (MSEs), which are the ideal MSE, the filter calculated MSE and the true MSE. In order to solve the influence of sampling approximation deviation of CKF on fault detection, an improved fault detection algorithm is proposed. The performance of fault-tolerant CKF is analyzed from two views. The first view is about comparing the filter calculated MSEs of CKF and of fault-tolerant CKF, the second view is about comparing the relative closeness of the filter calculated MSE to the true MSE for the two algorithms. Numerical examples further verify these conclusions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悦耳昊强完成签到,获得积分20
刚刚
刚刚
羊_应助刘洋采纳,获得10
2秒前
简默发布了新的文献求助10
3秒前
Ryan完成签到 ,获得积分10
3秒前
4秒前
4秒前
6秒前
7秒前
7秒前
传奇3应助直率的初露采纳,获得10
7秒前
DD发布了新的文献求助10
7秒前
乐乐应助简默采纳,获得10
8秒前
9秒前
ltz发布了新的文献求助10
9秒前
香蕉觅云应助lll采纳,获得10
10秒前
gege发布了新的文献求助10
11秒前
所所应助gg采纳,获得10
11秒前
精神发布了新的文献求助10
12秒前
14秒前
15秒前
15秒前
15秒前
16秒前
19秒前
19秒前
YH发布了新的文献求助10
19秒前
我是老大应助拉长的诗蕊采纳,获得10
21秒前
ATLI发布了新的文献求助10
21秒前
小二郎应助Wind_fall采纳,获得10
21秒前
21秒前
赘婿应助机灵的雁蓉采纳,获得10
22秒前
汉堡包应助机灵的雁蓉采纳,获得10
22秒前
Lucas应助机灵的雁蓉采纳,获得10
23秒前
许甜甜鸭应助机灵的雁蓉采纳,获得20
23秒前
23秒前
茵茵应助机灵的雁蓉采纳,获得20
23秒前
Banana完成签到,获得积分20
23秒前
希望天下0贩的0应助ltz采纳,获得10
23秒前
gege发布了新的文献求助10
24秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Erectile dysfunction From bench to bedside 200
Integrated supply chain risk management capabilities and its impact on supply chain demand management - an empirical study 200
Advanced Introduction to Behavioral Law and Economics 200
The acute effects of different percentages of blood flow restrictions on all-out back squat exercise 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824674
求助须知:如何正确求助?哪些是违规求助? 3366943
关于积分的说明 10443632
捐赠科研通 3086278
什么是DOI,文献DOI怎么找? 1697891
邀请新用户注册赠送积分活动 816559
科研通“疑难数据库(出版商)”最低求助积分说明 769789