Developing transcriptomic signatures as a biomarker of cellular senescence

衰老 生物标志物 转录组 细胞衰老 计算生物学 生物 细胞生物学 基因表达 基因 遗传学 表型
作者
Shamsed Mahmud,Louise E. Pitcher,Elijah Torbenson,Paul D. Robbins,Lei Zhang,Xiao Dong
出处
期刊:Ageing Research Reviews [Elsevier BV]
卷期号:99: 102403-102403 被引量:8
标识
DOI:10.1016/j.arr.2024.102403
摘要

Cellular senescence is a cell fate driven by different types of stress, where damaged cells exit from the cell cycle and, in many cases, develop an inflammatory senescence-associated secretory phenotype (SASP). Senescence has often been linked to driving aging and the onset of multiple diseases conferred by the harmful SASP, which disrupts tissue homeostasis and impairs the regular function of many tissues. This phenomenon was first observed in vitro when fibroblasts halted replication after approximately 50 population doublings. In addition to replication-induced senescence, factors such as DNA damage and oncogene activation can induce cellular senescence both in culture and in vivo. Despite their contribution to aging and disease, identifying senescent cells in vivo has been challenging due to their heterogeneity. Although senescent cells can express the cell cycle inhibitors p16Ink4a and/or p21Cip1 and exhibit SA-ß-gal activity and evidence of a DNA damage response, there is no universal biomarker for these cells, regardless of inducer or cell type. Recent studies have analyzed the transcriptomic characteristics of these cells, leading to the identification of signature gene sets like CellAge, SeneQuest, and SenMayo. Advancements in single-cell and spatial RNA sequencing now allow for analyzing senescent cell heterogeneity within the same tissue and the development of machine learning algorithms, e.g., SenPred, SenSig, and SenCID, to discover cellular senescence using RNA sequencing data. Such insights not only deepen our understanding of the genetic pathways driving cellular senescence, but also promote the development of its quantifiable biomarkers. This review summarizes the current knowledge of transcriptomic signatures of cellular senescence and their potential as in vivo biomarkers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘师兄吧完成签到,获得积分10
刚刚
酷酷依秋完成签到,获得积分10
刚刚
行云流水完成签到 ,获得积分10
1秒前
最棒的懒羊羊完成签到 ,获得积分10
6秒前
十月天秤完成签到,获得积分10
9秒前
neu_zxy1991完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
Hong完成签到 ,获得积分10
9秒前
Null完成签到 ,获得积分10
11秒前
AiQi完成签到 ,获得积分10
11秒前
脑洞疼应助整齐的豪英采纳,获得10
14秒前
舒适香露完成签到,获得积分10
17秒前
卞旭东完成签到,获得积分10
21秒前
21秒前
xiaofenzi完成签到,获得积分10
22秒前
momo妈咪完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
24秒前
25秒前
大猫不吃鱼完成签到,获得积分10
25秒前
清脆的秋寒完成签到,获得积分10
25秒前
自觉的迎松完成签到 ,获得积分10
26秒前
无心的天真完成签到 ,获得积分10
26秒前
26秒前
又又完成签到 ,获得积分10
29秒前
一番星完成签到 ,获得积分10
30秒前
30秒前
31秒前
明ming到此一游完成签到 ,获得积分10
31秒前
踏实的12发布了新的文献求助10
34秒前
pengchen完成签到 ,获得积分10
35秒前
Zx_1993完成签到 ,获得积分0
38秒前
犹豫的若完成签到,获得积分10
38秒前
安琪琪完成签到 ,获得积分10
46秒前
月光完成签到 ,获得积分10
46秒前
cgliuhx完成签到,获得积分10
48秒前
量子星尘发布了新的文献求助150
49秒前
LL完成签到 ,获得积分10
50秒前
Nolan完成签到,获得积分10
50秒前
1b完成签到,获得积分10
51秒前
踏实采波完成签到,获得积分10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5079696
求助须知:如何正确求助?哪些是违规求助? 4297858
关于积分的说明 13388968
捐赠科研通 4121131
什么是DOI,文献DOI怎么找? 2257039
邀请新用户注册赠送积分活动 1261319
关于科研通互助平台的介绍 1195403