Regulating microbial redox reactions towards enhanced removal of refractory organic nitrogen from wastewater

生物转化 化学 污水处理 氧化还原 废水 曝气 环境化学 氮气循环 生化工程 氮气 有机化学 环境工程 环境科学 工程类
作者
Ke Shi,Bin Liang,Hao-Yi Cheng,Hongcheng Wang,Wenzong Liu,Zhiling Li,Jinglong Han,Shu-Hong Gao,Aijie Wang
出处
期刊:Water Research [Elsevier BV]
卷期号:258: 121778-121778 被引量:11
标识
DOI:10.1016/j.watres.2024.121778
摘要

Biotechnology for wastewater treatment is mainstream and effective depending upon microbial redox reactions to eliminate diverse contaminants and ensure aquatic ecological health. However, refractory organic nitrogen compounds (RONCs, e.g., nitro-, azo-, amide-, and N-heterocyclic compounds) with complex structures and high toxicity inhibit microbial metabolic activity and limit the transformation of organic nitrogen to inorganic nitrogen. This will eventually result in non-compliance with nitrogen discharge standards. Numerous efforts suggested that applying exogenous electron donors or acceptors, such as solid electrodes (electrostimulation) and limited oxygen (micro-aeration), could potentially regulate microbial redox reactions and catabolic pathways, and facilitate the biotransformation of RONCs. This review provides comprehensive insights into the microbial regulation mechanisms and applications of electrostimulation and micro-aeration strategies to accelerate the biotransformation of RONCs to organic amine (amination) and inorganic ammonia (ammonification), respectively. Furthermore, a promising approach involving in-situ hybrid anaerobic biological units, coupled with electrostimulation and micro-aeration, is proposed towards engineering applications. Finally, employing cutting-edge methods including multi-omics analysis, data science driven machine learning, technology-economic analysis, and life-cycle assessment would contribute to optimizing the process design and engineering implementation. This review offers a fundamental understanding and inspiration for novel research in the enhanced biotechnology towards RONCs elimination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰留完成签到 ,获得积分10
刚刚
coolman冰人完成签到,获得积分20
刚刚
文静的蜗牛完成签到,获得积分10
1秒前
璐璐完成签到 ,获得积分10
1秒前
请问完成签到,获得积分10
1秒前
JiangSir完成签到,获得积分10
1秒前
2秒前
单薄的南蕾完成签到 ,获得积分10
2秒前
ZL完成签到 ,获得积分10
2秒前
木冉完成签到,获得积分10
2秒前
我是老大应助xwl采纳,获得10
2秒前
4秒前
桐桐应助求学深深采纳,获得10
4秒前
小袁完成签到,获得积分10
5秒前
王珊完成签到,获得积分20
5秒前
机密塔完成签到,获得积分10
6秒前
8秒前
hilton完成签到,获得积分10
8秒前
Xinxxx完成签到,获得积分10
8秒前
葳蕤完成签到 ,获得积分10
8秒前
8秒前
天谴之人完成签到,获得积分20
8秒前
wcj驳回了YifanWang应助
9秒前
10秒前
10秒前
hanzhuziyan完成签到,获得积分10
10秒前
王小布完成签到,获得积分10
10秒前
10秒前
重重完成签到 ,获得积分10
10秒前
整齐冬瓜完成签到,获得积分10
10秒前
天Q完成签到,获得积分10
11秒前
TheQ发布了新的文献求助10
11秒前
小二郎应助董鑫月采纳,获得10
11秒前
肉肉完成签到,获得积分10
12秒前
12秒前
二十八完成签到 ,获得积分10
13秒前
One发布了新的文献求助10
13秒前
Srishti完成签到,获得积分10
13秒前
xwl发布了新的文献求助10
14秒前
gao完成签到,获得积分10
14秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830693
求助须知:如何正确求助?哪些是违规求助? 3373035
关于积分的说明 10476908
捐赠科研通 3093097
什么是DOI,文献DOI怎么找? 1702333
邀请新用户注册赠送积分活动 818937
科研通“疑难数据库(出版商)”最低求助积分说明 771154