Machine-learning approaches for risk prediction in transcatheter aortic valve implantation: Systematic review and meta-analysis

荟萃分析 心脏病学 医学 内科学 计算机科学 人工智能
作者
Xander Jacquemyn,Emanuel Van Onsem,Keith A. Dufendach,James A. Brown,Dustin Kliner,Catalin Toma,Derek Serna‐Gallegos,Michel Pompeu Sá,Ibrahim Sultan
出处
期刊:The Journal of Thoracic and Cardiovascular Surgery [Elsevier BV]
被引量:2
标识
DOI:10.1016/j.jtcvs.2024.05.017
摘要

Objectives With the expanding integration of artificial intelligence (AI) and machine learning (ML) into the structural heart domain, numerous ML models have emerged for the prediction of adverse outcomes following transcatheter aortic valve implantation (TAVI). We aim to identify, describe, and critically appraise ML prediction models for adverse outcomes after TAVI. Key objectives consisted in summarizing model performance, evaluating adherence to reporting guidelines, and transparency. Methods We searched PubMed, SCOPUS, and Embase through August 2023. We selected published machine learning models predicting TAVI outcomes. Two reviewers independently screened articles, extracted data, and assessed the study quality according to the PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). Outcomes included summary C-statistics and model risk of bias assessed with the Prediction Model Risk of Bias Assessment Tool (PROBAST). C-statistics were pooled using a random-effects model. Results Twenty-one studies (118,153 patients) employing various ML algorithms (76 models) were included in the systematic review. Predictive ability of models varied: 11.8% inadequate (C-statistic <0.60), 26.3% adequate (C-statistic 0.60–0.70), 31.6% acceptable (C-statistic 0.70–0.80), and 30.3% demonstrated excellent (C-statistic >0.80) performance. Meta-analyses revealed excellent predictive performance for early mortality (C-statistic: 0.81 [95% CI, 0.65-0.91]), acceptable performance for 1-year mortality (C-statistic: 0.76 [95% CI, 0.67-0.84]), and acceptable performance for predicting permanent pacemaker implantation (C-statistic: 0.75 [95% CI, 0.51-0.90]). Conclusion ML models for TAVI outcomes exhibit adequate to excellent performance, suggesting potential clinical utility. We identified concerns in methodology and transparency, emphasizing the need for improved scientific reporting standards.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xrhk完成签到,获得积分10
1秒前
所所应助似水流年采纳,获得10
1秒前
CipherSage应助一二采纳,获得10
2秒前
3秒前
xrhk发布了新的文献求助10
4秒前
种桃老总发布了新的文献求助10
5秒前
carl发布了新的文献求助10
7秒前
科研通AI5应助carl采纳,获得10
14秒前
kfbcj完成签到 ,获得积分10
17秒前
19秒前
pluto应助缺粥采纳,获得10
19秒前
所所应助跪求采纳,获得10
22秒前
Ava应助优秀藏鸟采纳,获得10
23秒前
一二发布了新的文献求助10
24秒前
JamesPei应助偷乐采纳,获得10
28秒前
30秒前
30秒前
33秒前
yunga发布了新的文献求助10
35秒前
36秒前
Firstoronre发布了新的文献求助10
36秒前
37秒前
香蕉寒梅发布了新的文献求助10
37秒前
39秒前
pluto应助缺粥采纳,获得10
39秒前
跪求发布了新的文献求助10
40秒前
41秒前
43秒前
jackycas发布了新的文献求助10
44秒前
春江完成签到,获得积分10
44秒前
Owen应助Cuz采纳,获得10
44秒前
49秒前
50秒前
52秒前
甜蜜的灵凡完成签到,获得积分10
53秒前
pluto应助ke采纳,获得20
54秒前
kfbcj发布了新的文献求助30
56秒前
大模型应助Rh采纳,获得10
56秒前
欣喜柚子完成签到 ,获得积分10
57秒前
++完成签到 ,获得积分10
59秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779743
求助须知:如何正确求助?哪些是违规求助? 3325220
关于积分的说明 10221927
捐赠科研通 3040359
什么是DOI,文献DOI怎么找? 1668771
邀请新用户注册赠送积分活动 798775
科研通“疑难数据库(出版商)”最低求助积分说明 758549