LightGBM is an Effective Predictive Model for Postoperative Complications in Gastric Cancer: A Study Integrating Radiomics with Ensemble Learning

无线电技术 集成学习 人工智能 集合预报 癌症 医学 机器学习 计算机科学 内科学
作者
Wenli Wang,Rongrong Sheng,Shumei Liao,Zifeng Wu,Linjun Wang,Cunming Liu,Chun Yang,Riyue Jiang
标识
DOI:10.1007/s10278-024-01172-0
摘要

Postoperative complications of radical gastrectomy seriously affect postoperative recovery and require accurate risk prediction. Therefore, this study aimed to develop a prediction model specifically tailored to guide perioperative clinical decision-making for postoperative complications in patients with gastric cancer. A retrospective analysis was conducted on patients who underwent radical gastrectomy at the First Affiliated Hospital of Nanjing Medical University between April 2022 and June 2023. A total of 166 patients were enrolled. Patient demographic characteristics, laboratory examination results, and surgical pathological features were recorded. Preoperative abdominal CT scans were used to segment the visceral fat region of the patients through 3Dslicer, a 3D Convolutional Neural Network (3D-CNN) to extract image features and the LASSO regression model was employed for feature selection. Moreover, an ensemble learning strategy was adopted to train the features and predict postoperative complications of gastric cancer. The prediction performance of the LGBM (Light Gradient Boosting Machine), XGB (XGBoost), RF (Random Forest), and GBDT (Gradient Boosting Decision Tree) models was evaluated through fivefold cross-validation. This study successfully constructed a model for predicting early complications following radical gastrectomy based on the optimal algorithm, LGBM. The LGBM model yielded an AUC value of 0.9232 and an accuracy of 87.28% (95% CI, 75.61-98.95%), surpassing the performance of other models. Through ensemble learning and integration of perioperative clinical data and visceral fat radiomics, a predictive LGBM model was established. This model has the potential to facilitate individualized clinical decision-making and the early recovery of patients with gastric cancer post-surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
许愿非树完成签到,获得积分10
6秒前
7秒前
8秒前
慕青应助等待盼雁采纳,获得10
10秒前
南城花开完成签到 ,获得积分10
10秒前
11秒前
友好的翅膀发布了新的文献求助200
11秒前
慕青应助晶晶采纳,获得10
15秒前
devilito发布了新的文献求助10
15秒前
xing完成签到,获得积分10
16秒前
16秒前
18秒前
Macaco完成签到,获得积分10
20秒前
lll发布了新的文献求助10
20秒前
等待盼雁发布了新的文献求助10
22秒前
我是老大应助刘搞笑采纳,获得10
26秒前
狂野凝竹完成签到,获得积分10
28秒前
淞33完成签到 ,获得积分10
29秒前
PSCs完成签到,获得积分10
30秒前
华仔应助狂野凝竹采纳,获得10
35秒前
36秒前
36秒前
科研通AI5应助ZHou采纳,获得10
37秒前
38秒前
Cherrita完成签到,获得积分10
38秒前
38秒前
Cherrita发布了新的文献求助10
42秒前
晶晶发布了新的文献求助10
42秒前
小任性发布了新的文献求助10
44秒前
45秒前
葛怀锐完成签到 ,获得积分10
45秒前
lll完成签到,获得积分10
46秒前
50秒前
北风应助SCI采纳,获得10
51秒前
53秒前
科研通AI5应助不安梦桃采纳,获得10
55秒前
okjiujiu发布了新的文献求助10
57秒前
shadow发布了新的文献求助10
57秒前
英姑应助kai采纳,获得10
58秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778778
求助须知:如何正确求助?哪些是违规求助? 3324341
关于积分的说明 10217992
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668089
邀请新用户注册赠送积分活动 798545
科研通“疑难数据库(出版商)”最低求助积分说明 758415