Bridging Task-Specific and Task-Interactive Features With Opportune Branching and Adaptive Attention for Object Detection

桥接(联网) 计算机科学 任务(项目管理) 支化(高分子化学) 人机交互 认知心理学 心理学 工程类 系统工程 计算机安全 复合材料 材料科学
作者
Yahui Wen,Yunfei Yin
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tnnls.2025.3562588
摘要

Object detection is a fundamental task that usually requires the optimization of two sub-tasks (i.e., localization and classification). However, there exists a lack of understanding regarding the changing pattern of their preferred interest locations. Existing work adopts alternating detection head designs in terms of handling task-interactive and task-specific features. To tackle this issue, we conduct a thorough analysis to investigate the contradicting focus-shifting patterns of these sub-tasks. Specifically, we first collect data points on the MS-COCO dataset and conduct numerical analysis to pinpoint the optimal branching point by evaluating the effect size metrics of feature similarity and by calculating the 2-D inter-cluster distances between features among potential branching points. Then, qualitative analysis regarding the feature representation is carried out to further justify the results. At last, we demonstrate the potential generalizability of our analysis pipelines across various architectures, label assignment methods, training techniques, and datasets. In light of the above finding, we propose the opportune branching head that leverages the conflict between task-interactive and task-specific features by decoupling the sub-tasks at the condign point to maximize the preference. We further extend the concept of opportune branching and propose the adaptive attention mechanism to enable more effective attention allocation in a laconic manner, magnifying the effect of opportune branching. We conduct extensive experiments on the MS-COCO benchmark, the PASCAL VOC benchmark, and the Cityscape benchmark, where our method achieves competitive results. We achieve 50.0 AP with the ResNeXt-101-4d-64 backboneand59.8AP with the Swin-L transformer backbone on theMS-COCObenchmark, representing the best performance among nontransformer-based methods while also outperforming many state-of-the-art transformer-based methods by a clear margin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zgw完成签到,获得积分10
刚刚
LF发布了新的文献求助10
1秒前
linlin发布了新的文献求助10
2秒前
bolosenjidy完成签到,获得积分10
2秒前
且慢完成签到 ,获得积分0
2秒前
柔之发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
自由的松发布了新的文献求助10
3秒前
3秒前
不会飞的鸟发布了新的文献求助100
3秒前
含蓄的安蕾完成签到,获得积分10
4秒前
宇文宛菡完成签到 ,获得积分0
4秒前
Hilda007应助flh采纳,获得10
4秒前
细腻黄豆发布了新的文献求助10
5秒前
Sun完成签到,获得积分10
5秒前
我是老大应助从容雪冥采纳,获得30
5秒前
lieomey完成签到,获得积分10
6秒前
穢翼完成签到,获得积分10
6秒前
changl2023完成签到,获得积分10
6秒前
xw1234完成签到,获得积分20
6秒前
leo发布了新的文献求助10
6秒前
科研通AI2S应助leoan采纳,获得10
6秒前
L3发布了新的文献求助10
7秒前
英俊的铭应助心动可乐采纳,获得10
7秒前
共享精神应助林林采纳,获得10
7秒前
研友_VZG7GZ应助shangfeng采纳,获得10
7秒前
7秒前
murphy完成签到,获得积分10
7秒前
自然小鸭子完成签到,获得积分10
8秒前
绿豆炒青椒完成签到,获得积分10
8秒前
LF发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
cldg完成签到,获得积分10
8秒前
兼听则明应助Dawn采纳,获得30
8秒前
8秒前
小苏同学完成签到,获得积分10
9秒前
sunday2024完成签到,获得积分10
9秒前
lieomey发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5489302
求助须知:如何正确求助?哪些是违规求助? 4588013
关于积分的说明 14417128
捐赠科研通 4519737
什么是DOI,文献DOI怎么找? 2476385
邀请新用户注册赠送积分活动 1461857
关于科研通互助平台的介绍 1435004