Hierarchical Classification Auxiliary Network for Time Series Forecasting

系列(地层学) 时间序列 计算机科学 数据挖掘 人工智能 机器学习 地质学 古生物学
作者
Sun Yanru,Zongxia Xie,Dongyue Chen,Emadeldeen Eldele,Qinghua Hu
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:39 (19): 20743-20751
标识
DOI:10.1609/aaai.v39i19.34286
摘要

Deep learning has significantly advanced time series forecasting through its powerful capacity to capture sequence relationships. However, training these models with the Mean Square Error (MSE) loss often results in over-smooth predictions, making it challenging to handle the complexity and learn high-entropy features from time series data with high variability and unpredictability. In this work, we introduce a novel approach by tokenizing time series values to train forecasting models via cross-entropy loss, while considering the continuous nature of time series data. Specifically, we propose a Hierarchical Classification Auxiliary Network, HCAN, a general model-agnostic component that can be integrated with any forecasting model. HCAN is based on a Hierarchy-Aware Attention module that integrates multi-granularity high-entropy features at different hierarchy levels. At each level, we assign a class label for timesteps to train an Uncertainty-Aware Classifier. This classifier mitigates the over-confidence in softmax loss via evidence theory. We also implement a Hierarchical Consistency Loss to maintain prediction consistency across hierarchy levels. Extensive experiments integrating HCAN with state-of-the-art forecasting models demonstrate substantial improvements over baselines on several real-world datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼鱼完成签到 ,获得积分10
刚刚
堪洪完成签到,获得积分10
刚刚
刚刚
xul279完成签到,获得积分10
刚刚
特昂唐发布了新的文献求助10
1秒前
花满楼发布了新的文献求助10
1秒前
苏芳发布了新的文献求助10
1秒前
LXXue完成签到,获得积分10
2秒前
2秒前
大个应助csatsd采纳,获得10
3秒前
chizhi完成签到,获得积分10
3秒前
心灵美咖啡豆完成签到,获得积分10
4秒前
XY完成签到 ,获得积分10
4秒前
xcxc0914完成签到,获得积分20
4秒前
John发布了新的文献求助10
4秒前
dd完成签到,获得积分10
5秒前
5秒前
LXXue发布了新的文献求助10
5秒前
2233发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
6秒前
8秒前
8秒前
栗子发布了新的文献求助20
9秒前
9秒前
9秒前
10秒前
勤劳的山柏完成签到,获得积分10
10秒前
山海之间完成签到,获得积分10
10秒前
lss发布了新的文献求助10
11秒前
丘比特应助无辜的夏山采纳,获得10
13秒前
马海发布了新的文献求助10
14秒前
科研通AI5应助zjmm采纳,获得10
14秒前
15秒前
15秒前
John完成签到,获得积分10
16秒前
16秒前
呐呐呐发布了新的文献求助10
16秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817421
求助须知:如何正确求助?哪些是违规求助? 3360775
关于积分的说明 10409208
捐赠科研通 3078870
什么是DOI,文献DOI怎么找? 1690820
邀请新用户注册赠送积分活动 814169
科研通“疑难数据库(出版商)”最低求助积分说明 768060