系列(地层学)
时间序列
计算机科学
数据挖掘
人工智能
机器学习
地质学
古生物学
作者
Sun Yanru,Zongxia Xie,Dongyue Chen,Emadeldeen Eldele,Qinghua Hu
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence
[Association for the Advancement of Artificial Intelligence (AAAI)]
日期:2025-04-11
卷期号:39 (19): 20743-20751
标识
DOI:10.1609/aaai.v39i19.34286
摘要
Deep learning has significantly advanced time series forecasting through its powerful capacity to capture sequence relationships. However, training these models with the Mean Square Error (MSE) loss often results in over-smooth predictions, making it challenging to handle the complexity and learn high-entropy features from time series data with high variability and unpredictability. In this work, we introduce a novel approach by tokenizing time series values to train forecasting models via cross-entropy loss, while considering the continuous nature of time series data. Specifically, we propose a Hierarchical Classification Auxiliary Network, HCAN, a general model-agnostic component that can be integrated with any forecasting model. HCAN is based on a Hierarchy-Aware Attention module that integrates multi-granularity high-entropy features at different hierarchy levels. At each level, we assign a class label for timesteps to train an Uncertainty-Aware Classifier. This classifier mitigates the over-confidence in softmax loss via evidence theory. We also implement a Hierarchical Consistency Loss to maintain prediction consistency across hierarchy levels. Extensive experiments integrating HCAN with state-of-the-art forecasting models demonstrate substantial improvements over baselines on several real-world datasets.
科研通智能强力驱动
Strongly Powered by AbleSci AI