Local Asymmetric Gaussian Fitting Algorithm for Enhanced Peak Detection of Liquid Chromatography–High Resolution Mass Spectrometry Data

化学 质谱法 分辨率(逻辑) 色谱法 高分辨率 分析化学(期刊) 高斯分布 算法 人工智能 遥感 计算化学 计算机科学 地质学
作者
Shengsi Zou,Qinpeng Cui,Jinyue Liu,Qiong Wu,Lijia Zhu,Da Chen,Yiping Du,Ting Wu
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:97 (20): 10603-10610 被引量:1
标识
DOI:10.1021/acs.analchem.5c00060
摘要

Feature detection is a crucial step in the data preprocessing workflow of liquid chromatography-mass spectrometry (LC-MS). However, many existing methods are hindered by intricate parameter adjustments and high false positive rates during extracted ion chromatogram (EIC) construction and peak detection, which challenges the identification of spurious and missing compounds. This study introduces a novel algorithm, local asymmetric Gaussian fitting (LAGF), for peak detection. LAGF integrates with the "data points bins" EIC extraction algorithm to enhance the feature detection efficiency. By using a 1 Da data points bin for EIC extraction, computational time is significantly reduced, making the method well-suited for batch metabolomics analysis. LAGF minimizes parameter numbers of generalized two-sided asymmetric Gaussian fitting by automatically determining the peak center (μ) and height (α) while accommodating two-sided standard deviations (σ1 and σ2) to self-adaptively model peak patterns. Features are filtered based on a goodness-of-fit threshold of 0.5. The performance of LAGF was validated using standard mixtures and serum samples at different concentrations in reversed-phase or hydrophilic interaction LC mode. In most cases, LAGF outperformed conventional tools in terms of determination coefficient (R2) and relative standard deviation for automatically detected peak areas. The LAGF algorithm is available as open-source Python code alongside an interactive interface, facilitating implementation in both nontargeted and targeted LC-MS analysis to enhance peak detection and compound identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
qww发布了新的文献求助10
1秒前
tangyuan完成签到,获得积分10
2秒前
Mizuki发布了新的文献求助10
2秒前
卓儿发布了新的文献求助10
2秒前
义气秀发完成签到 ,获得积分10
2秒前
2秒前
3秒前
zhaoming完成签到,获得积分10
3秒前
李健的小迷弟应助zz采纳,获得10
3秒前
Owen应助碰碰采纳,获得10
3秒前
3秒前
小巧紊完成签到,获得积分10
3秒前
饶渔发布了新的文献求助10
3秒前
3秒前
赵江林完成签到,获得积分10
3秒前
好运开开开完成签到 ,获得积分10
3秒前
Xiaoxiao应助踏实志泽采纳,获得20
4秒前
脑洞疼应助小白采纳,获得10
4秒前
饶天源发布了新的文献求助10
4秒前
aceman发布了新的文献求助10
4秒前
浮游应助吕小布采纳,获得10
4秒前
layzhj完成签到,获得积分10
5秒前
5秒前
搜集达人应助命苦科研人采纳,获得10
5秒前
wzwzwz发布了新的文献求助10
5秒前
5秒前
6秒前
无极微光应助酒温书生采纳,获得20
6秒前
半夏发布了新的文献求助10
6秒前
6秒前
赵西里完成签到,获得积分10
6秒前
6秒前
6秒前
浮游应助ws采纳,获得10
7秒前
7秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5167192
求助须知:如何正确求助?哪些是违规求助? 4359127
关于积分的说明 13572359
捐赠科研通 4205589
什么是DOI,文献DOI怎么找? 2306477
邀请新用户注册赠送积分活动 1306190
关于科研通互助平台的介绍 1252700