Enhanced Glycerol Electrooxidation Capability of NiO by Suppressing the Accumulation of Ni4+ Sites

非阻塞I/O 材料科学 催化作用 析氧 电化学 化学工程 密度泛函理论 无机化学 物理化学 电极 化学 计算化学 有机化学 冶金 工程类
作者
Baojun Long,Qi Zhang,Mingyu Yang,Yuchan Li,Haiquan Liu,Dong He,Wenqing Li,Z. J. Ke,Xiangheng Xiao
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:17 (9): 13794-13803 被引量:4
标识
DOI:10.1021/acsami.4c18860
摘要

Glycerol electrooxidation (GOR), as a typical nucleophilic biomass oxidation reaction, provides a promising anodic alternative for coupling green hydrogen generation at the cathode. However, the challenges of identifying active sites and elucidating reaction mechanisms greatly limit the design of high-performance catalysts. Herein, we use NiO and Ni/NiO as model catalysts to investigate glycerol oxidation. Electrochemical measurements and operando spectroscopic studies uncovered that Ni2+/Ni3+ species are the true active sites of NiO for GOR at lower potentials. However, the Ni2+/Ni3+ species formed on the NiO surface were easily converted to Ni4+ species (NiO2) at higher potentials, which not only contributed to the overoxidation of glycerol electrolysis products but also worked as the main active sites of the competitive oxygen evolution reaction (OER), resulting in the rapid decay of Faradic efficiencies (FEs) at high potentials. Interestingly, for Ni/NiO, only Ni3+ species were formed on the surface. Experimental and density functional theory (DFT) investigations indicated that due to the relatively lower average valence state of Ni in Ni/NiO and strong electronic interaction on the Ni/NiO interface, the surface reconstruction of Ni/NiO was effectively manipulated. Only Ni/NiO → NiOOH (Ni3+) transformation was observed, and the formation of Ni4+ species was greatly suppressed. As a result, Ni/NiO delivered superior GOR activity, and the FE did not drop apparently at high potentials. This work offers mechanistic insight into how to identify and maintain the true active sites of catalytic materials for value-added nucleophile electrooxidation reactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助学习鱼采纳,获得10
刚刚
wang完成签到,获得积分20
1秒前
2秒前
喵喵喵完成签到,获得积分10
2秒前
2秒前
王云霞发布了新的文献求助10
2秒前
爆米花应助机灵书易采纳,获得10
3秒前
Ava应助dizi采纳,获得10
3秒前
门门完成签到 ,获得积分10
3秒前
房谷槐完成签到,获得积分10
3秒前
华仔应助念心采纳,获得30
5秒前
5秒前
5秒前
Yangon发布了新的文献求助10
6秒前
LING完成签到,获得积分10
6秒前
111发布了新的文献求助10
6秒前
神勇惜筠完成签到 ,获得积分10
6秒前
科研通AI6应助ray采纳,获得30
7秒前
Sphere发布了新的文献求助10
7秒前
7秒前
JamesPei应助吕景宽采纳,获得10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
小马甲应助房谷槐采纳,获得10
9秒前
9秒前
念心完成签到,获得积分10
9秒前
lu发布了新的文献求助10
9秒前
脑洞疼应助怕黑的凝旋采纳,获得10
9秒前
MUto发布了新的文献求助20
9秒前
10秒前
不知道发布了新的文献求助10
10秒前
10秒前
TheSail关注了科研通微信公众号
10秒前
10秒前
10秒前
hellzhu完成签到,获得积分10
11秒前
wahaha发布了新的文献求助10
11秒前
大个应助无奈敏采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5429451
求助须知:如何正确求助?哪些是违规求助? 4542928
关于积分的说明 14183617
捐赠科研通 4460886
什么是DOI,文献DOI怎么找? 2445912
邀请新用户注册赠送积分活动 1437068
关于科研通互助平台的介绍 1414191