Research on the virtual restoration of faded Dunhuang murals with a global attention mechanism

机制(生物学) 视觉艺术 计算机科学 心理学 艺术 哲学 认识论
作者
Zhen Liu,Silu Liu,Shuo Fan
标识
DOI:10.1038/s40494-025-01592-3
摘要

The Mogao Grottoes, located at the western end of the Hexi Corridor in Dunhuang, constitute a splendid artistic treasure trove of ancient Chinese civilization. However, due to various external factors, such as the environment and human activities, existing murals commonly suffer from fading and discoloration problems. The utilization of color restoration techniques grounded in deep learning promise perpetual preservation of mural images. Nevertheless, it is challenging to acquire a substantial number of authentic fading images and corresponding reference images as paired data for training, which constrains the scope of research and development in the domain of mural color restoration. The images generated by the current color restoration methods based on cycle generative adversarial networks suffer from poor semantic consistency, blurred edges, false colors and artifacts, and other mismatches with human visual perception. This paper proposes a novel approach of color restoration for unpaired mural images that uses cycle-consistent generative adversarial networks with an attention mechanism and a spectral normalization discriminator to address key challenges. First, to reduce the false colors and artifacts in the restored image caused by the insufficient extraction of mural detail features, a global attention mechanism based on a combination of average pooling and maximum pooling is constructed in the generator. This mechanism is designed to learn the effective information of the feature maps adaptively. In addition, we employ an SN-Patch discriminator to enhance the training stability and convergence speed of the model and improve the clarity of the color restored image. Finally, to further optimize the generated images, the network applies a composite loss function, a linear combination of adversarial loss, cycle consistency loss, identity mapping loss, and cyclic perceptual consistency loss, which contribute to improving texture quality and generating visually more natural color-restored images. The findings from the experiments conducted on both simulated and genuine faded mural images illustrate that the introduced approach outperforms others in terms of both objective and subjective evaluation standards, achieving a more precise recreation of the colors and intricate details present in the faded mural imagery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyc1111111发布了新的文献求助20
1秒前
传奇3应助TANG采纳,获得10
2秒前
虚心的惮完成签到 ,获得积分10
4秒前
Flynn完成签到 ,获得积分10
7秒前
8秒前
格兰德法泽尔完成签到,获得积分10
9秒前
111完成签到,获得积分10
10秒前
99668完成签到,获得积分10
11秒前
12秒前
001发布了新的文献求助10
13秒前
zyc1111111发布了新的文献求助20
13秒前
TANG完成签到,获得积分20
13秒前
13秒前
16秒前
叶叶发布了新的文献求助10
18秒前
19秒前
21秒前
欧阳完成签到,获得积分10
21秒前
小树叶完成签到 ,获得积分10
24秒前
Angsent完成签到,获得积分10
24秒前
ghn123456789完成签到,获得积分10
24秒前
科研狗完成签到 ,获得积分10
26秒前
叶叶完成签到,获得积分10
26秒前
机会完成签到,获得积分10
27秒前
夏天不回来完成签到,获得积分10
27秒前
土豆丝完成签到 ,获得积分10
31秒前
痴情的雁易完成签到,获得积分10
33秒前
zyc1111111发布了新的文献求助20
34秒前
自由如天完成签到,获得积分10
36秒前
Yolo完成签到,获得积分10
37秒前
青牛完成签到,获得积分10
37秒前
fufufufu完成签到,获得积分10
37秒前
丢硬币的小孩完成签到,获得积分10
38秒前
111完成签到 ,获得积分10
38秒前
arya完成签到,获得积分10
39秒前
hjyylab应助科研通管家采纳,获得10
39秒前
领导范儿应助科研通管家采纳,获得30
39秒前
Ahsan应助科研通管家采纳,获得20
39秒前
无餍应助科研通管家采纳,获得10
39秒前
FelixChen应助科研通管家采纳,获得10
39秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843337
求助须知:如何正确求助?哪些是违规求助? 3385634
关于积分的说明 10541174
捐赠科研通 3106236
什么是DOI,文献DOI怎么找? 1710900
邀请新用户注册赠送积分活动 823851
科研通“疑难数据库(出版商)”最低求助积分说明 774308