Rapid identification of rice geographical origin and adulteration by excitation-emission matrix fluorescence spectroscopy combined with chemometrics based on fluorescence probe

化学计量学 荧光 主成分分析 线性判别分析 可追溯性 模式识别(心理学) 基质(化学分析) 分析化学(期刊) 水溶液中的金属离子 化学 生物系统 人工智能 离子 色谱法 计算机科学 数学 生物 物理 统计 量子力学 有机化学
作者
Leqian Hu,Yan Zhang,Ying Ju,Xiangru Meng,Chunling Yin
出处
期刊:Food Control [Elsevier BV]
卷期号:146: 109547-109547 被引量:23
标识
DOI:10.1016/j.foodcont.2022.109547
摘要

In general, fluorescent probes are used to determine certain metal ions due to their high selectivity, whereas the weakly selective probe could produce different fluorescence spectra after interacting with numerous metal ions. Based on the different species and contents of metal ions in rice, the weakly selective fluorescence probe combined with chemometrics for rice origin traceability and adulteration identification was studied in this study. Excitation-emission matrix spectra (EEMs) of rice extracts from different geographical origins (including adulterated rice) combined with the weakly selective probe were collected. Considering the three-dimensional (3D) characteristics of the EEMs, multi-dimensional principal component analysis (M-PCA) and unfold partial least squares discriminant analysis (U-PLS-DA) pattern recognition methods were used to extract useful information from complex 3D fluorescence data. And the models were built to classify the origin and adulteration of rice. The results of the M-PCA analysis showed that rice from different origins could not be completely distinguished from each other, but there was a clustering trend. It was suggested that the 3D fluorescence data measured after the reaction of the weakly selective probe with rice extracts may be used for rice origin traceability combined with pattern recognition. The analysis of 3D fluorescence data based on U-PLS-DA showed that the classification accuracy of training sets was 100%, and the accuracy of predicted sets was 98%. The results of the M-PCA analysis also showed that rice with different adulteration ratios had a clustering trend. The accurate recognition rate of training sets and predicted sets after U-PLS-DA analysis of adulterated rice was 99% and 95%, respectively. The results showed that the weakly selective probe could be used for rice origin traceability and adulteration identification after the reaction with rice extracts, combined with pattern recognition methods. This study broadens the application range of the fluorescent probe, which can be used for origin traceability and adulteration recognition of foods that cannot produce fluorescence themselves.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
admox完成签到,获得积分10
1秒前
苄腈发布了新的文献求助10
1秒前
wxj发布了新的文献求助10
2秒前
拓跋采萱完成签到,获得积分10
2秒前
799完成签到 ,获得积分10
3秒前
禾苗完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
4秒前
5秒前
深情安青应助vlog123采纳,获得10
7秒前
善良的花菜完成签到 ,获得积分10
7秒前
解羽发布了新的文献求助10
8秒前
jy完成签到,获得积分10
9秒前
搜集达人应助白猫采纳,获得10
9秒前
ChenXinde发布了新的文献求助10
9秒前
10秒前
HHYYAA发布了新的文献求助10
10秒前
yl666关注了科研通微信公众号
11秒前
香蕉灵槐完成签到,获得积分10
11秒前
李健的粉丝团团长应助wxj采纳,获得10
11秒前
万能图书馆应助vicky采纳,获得10
11秒前
YTY完成签到,获得积分10
11秒前
Lucas应助重要手机采纳,获得10
12秒前
大模型应助袁保蓉采纳,获得10
13秒前
Sylvia发布了新的文献求助10
13秒前
苄腈完成签到,获得积分10
13秒前
15秒前
冷艳觅柔发布了新的文献求助10
15秒前
15秒前
不想搞科研完成签到,获得积分20
16秒前
木木发布了新的文献求助20
17秒前
慕青应助wowwyw采纳,获得10
17秒前
17秒前
CipherSage应助导师求放过采纳,获得100
17秒前
Owen应助导师求放过采纳,获得100
17秒前
滴滴完成签到,获得积分10
18秒前
高分求助中
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5242511
求助须知:如何正确求助?哪些是违规求助? 4409060
关于积分的说明 13723997
捐赠科研通 4278352
什么是DOI,文献DOI怎么找? 2347612
邀请新用户注册赠送积分活动 1344773
关于科研通互助平台的介绍 1302862