Improvement of Mechanical Characteristics on Ultra-High Molecular Weight Polyethylene Surface through Zinc Oxide Atomic Layer Deposition Film

材料科学 超高分子量聚乙烯 原子层沉积 复合材料 图层(电子) 弹性模量 纳米压痕 聚乙烯 扫描电子显微镜 陶瓷 沉积(地质) 摩擦学 冶金 古生物学 生物 沉积物
作者
Minpyo Hong,Kyungmin Kim,Yongnam Song
出处
期刊:Advances in Materials Science and Engineering [Hindawi Limited]
卷期号:2022: 1-11 被引量:2
标识
DOI:10.1155/2022/8993791
摘要

Wear failures in ultra-high molecular weight polyethylene (UHMWPE) compartments are known to limit the life of a joint implant. In this study, we applied atomic layer deposition (ALD) technique to produce wear-resistant zinc oxide (ZnO) films to improve mechanical and wear characteristics on the surface of UHMWPE. Organic material layers in molecular units were mixed with ALD ZnO films to minimize surface cracks through a molecular layer deposition (MLD) technique. We aimed to examine (1) the effect of organic layers on minimizing surface cracks and (2) the mechanical properties of ZnO and inorganic/organic hybrid films. We prepared UHMWPE samples with pure ZnO and five different hybrid films with ZnO to organic layer ratios of 1 : 1, 2 : 1, 3 : 1, 4 : 1, and 5 : 1. Surface cracks were observed by using a field-emission scanning electron microscope. Hardness and elastic modulus of an ALD-coated UHMWPE were measured by nano-indentation examinations. Severe cracks were found in the samples with pure ZnO films. However, no cracks were found in the samples with all hybrid films except the samples with a ZnO to organic layer ratio of 5 : 1. The hardness and elastic modulus of the samples with pure ZnO and hybrid films significantly increased compared to those of the native UHMWPE. The hardness to elastic modulus ratios, indicating the wear resistance, increased over 50% for all films compared to the values of native UHMWPE. These results suggested that ALD ceramic coatings with organic layers may become a potential solution for realizing a wear-resistant protection coating for the polymer compartment of joint prostheses.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开放依琴完成签到,获得积分10
刚刚
热心枕头发布了新的文献求助10
1秒前
脑洞疼应助牛大锤采纳,获得10
1秒前
小遇完成签到 ,获得积分10
1秒前
小铭完成签到,获得积分10
1秒前
科研通AI6应助刘海清采纳,获得10
2秒前
吕懿发布了新的文献求助10
2秒前
安静愫完成签到,获得积分10
2秒前
领导范儿应助吐丝麵包采纳,获得10
3秒前
xx发布了新的文献求助10
3秒前
当时的发布了新的文献求助10
4秒前
共享精神应助飞快的惜芹采纳,获得10
4秒前
4秒前
登登完成签到,获得积分10
5秒前
5秒前
数树完成签到,获得积分10
5秒前
彭于晏应助孤独的冬易采纳,获得10
7秒前
7秒前
8秒前
数树发布了新的文献求助10
8秒前
9秒前
10秒前
pluto应助蟹蟹会说谢谢采纳,获得10
11秒前
11秒前
奋斗的元正完成签到,获得积分10
11秒前
xcchh完成签到,获得积分10
12秒前
12秒前
13秒前
阿水发布了新的文献求助10
13秒前
科研通AI6应助幸福台灯采纳,获得30
13秒前
wwl完成签到,获得积分10
13秒前
lin发布了新的文献求助10
14秒前
田田田田发布了新的文献求助10
15秒前
Maria完成签到,获得积分10
15秒前
JL完成签到,获得积分10
15秒前
16秒前
bkagyin应助阿水采纳,获得10
16秒前
17秒前
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613612
求助须知:如何正确求助?哪些是违规求助? 4698726
关于积分的说明 14898834
捐赠科研通 4736726
什么是DOI,文献DOI怎么找? 2547094
邀请新用户注册赠送积分活动 1511026
关于科研通互助平台的介绍 1473571