Design And Analysis Of Insider Threat Detection And Prediction System Using Machine Learning Techniques

计算机科学 内部威胁 知情人 上传 互联网 特征选择 数据挖掘 集合(抽象数据类型) 机器学习 过程(计算) 人工智能 数据集 噪音(视频) 万维网 政治学 法学 图像(数学) 程序设计语言 操作系统
作者
Anupam Mittal,Urvashi Garg
标识
DOI:10.1109/icecct56650.2023.10179686
摘要

Data is critical for large as well as small organizations as customer trust depends upon the privacy of information maintained. The key tool that every organization uses for assessing resources is the Internet. The use of technology and the Internet comes with a cost. This cost is in the form of cyber-attacks that exist over the Internet. One of the hardest attacks to detect is the insider That occurs from within the organization. The organization must distinguish between the employers as well as the insiders. This paper purposed an optimization-based strategy for the detection of insider threats. Spider monkey optimization is applied to detect the sentiments present within the R4.2 cert data set. This data set has been generated by the university of Carnegie Mellon and is used to detect insider threats. The overall process of insider threat detection Starts with downloading the data set from github. The downloaded files have been compressed so to use them; they must be extracted. A large number of files are contained within the cert dataset. For the proposed work(SMLDA optimization), email and psychometric datasets are shortlisted. After extracting the dataset, pre-processing phase is applied. Within pre-processing, noise in terms of missing values is tackled. This is achieved by rejecting records containing null values within individual cells of the dataset. after pre-processing, dataset features are extracted using the content field of the dataset along with the natural language processing toolbox. Feature selection is performed using the Spyder monkey approach. Selection will be based on the contribution factor calculated with linear discriminant analysis. Using SMO, the highest contribution document built with LDA will be selected. In the end, the polarity of the document is calculated using the TextBlob library. The result of the SMO-driven sentiment analysis (anger, neutral, negative, positive, and sad) is compared with the plain LDA approach. SMO-driven sentiment analysis generates a classification accuracy of 99% and the LDA approach generates a classification accuracy of 90%. Furthermore, it was discovered that negative and sad sentiments most resulted in insider threats.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣欣完成签到,获得积分10
1秒前
端庄的连碧完成签到,获得积分10
1秒前
XTQ完成签到,获得积分10
1秒前
hhh完成签到,获得积分10
1秒前
1秒前
破灭圆舞曲完成签到 ,获得积分10
2秒前
简单点完成签到 ,获得积分10
2秒前
雾中的山雾中的我完成签到,获得积分10
3秒前
张文博发布了新的文献求助10
3秒前
3秒前
Sunk关注了科研通微信公众号
3秒前
李雪松完成签到 ,获得积分10
3秒前
5秒前
贪玩小小完成签到 ,获得积分10
5秒前
菜菜鱼完成签到,获得积分10
5秒前
LZJ完成签到 ,获得积分10
5秒前
老实曼香完成签到,获得积分20
5秒前
外向钢铁侠完成签到,获得积分10
6秒前
唯心止论完成签到,获得积分10
7秒前
Steven完成签到 ,获得积分10
7秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
pcr163应助科研通管家采纳,获得30
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
Russula_Chu应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
pcr163应助科研通管家采纳,获得30
8秒前
8秒前
任性英姑完成签到,获得积分10
8秒前
8秒前
sisi完成签到,获得积分10
9秒前
lucky珠完成签到 ,获得积分10
9秒前
labordoc完成签到,获得积分10
9秒前
Yzh完成签到,获得积分10
9秒前
Frim发布了新的文献求助10
10秒前
10秒前
冰留完成签到 ,获得积分10
10秒前
coolman冰人完成签到,获得积分20
10秒前
文静的蜗牛完成签到,获得积分10
11秒前
璐璐完成签到 ,获得积分10
11秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830693
求助须知:如何正确求助?哪些是违规求助? 3373035
关于积分的说明 10476908
捐赠科研通 3093097
什么是DOI,文献DOI怎么找? 1702333
邀请新用户注册赠送积分活动 818937
科研通“疑难数据库(出版商)”最低求助积分说明 771154