Structural mechanism of BRD4-NUT and p300 bipartite interaction in propagating aberrant gene transcription in chromatin in NUT carcinoma

染色质 组蛋白 BRD4 细胞生物学 博士手指 核小体 生物 转录因子 化学 遗传学 溴尿嘧啶 基因 锌指
作者
Di Yu,Yingying Liang,Claudia Kim,Anbalagan Jaganathan,Donglei Ji,Xinye Han,Xuelan Yang,Yanjie Jia,Ruirui Gu,Chunyu Wang,Qiang Zhang,Ka Lung Cheung,Ming‐Ming Zhou,Lei Zeng
出处
期刊:Nature Communications [Nature Portfolio]
卷期号:14 (1) 被引量:22
标识
DOI:10.1038/s41467-023-36063-5
摘要

BRD4-NUT, a driver fusion mutant in rare and highly aggressive NUT carcinoma, acts in aberrant transcription of anti-differentiation genes by recruiting histone acetyltransferase (HAT) p300 and promoting p300-driven histone hyperacetylation and nuclear condensation in chromatin. However, the molecular basis of how BRD4-NUT recruits and activates p300 remains elusive. Here, we report that BRD4-NUT contains two transactivation domains (TADs) in NUT that bind to the TAZ2 domain in p300. Our NMR structures reveal that NUT TADs adopt amphipathic helices when bound to the four-helical bundle TAZ2 domain. The NUT protein forms liquid-like droplets in-vitro that are enhanced by TAZ2 binding in 1:2 stoichiometry. The TAD/TAZ2 bipartite binding in BRD4-NUT/p300 triggers allosteric activation of p300 and acetylation-driven liquid-like condensation on chromatin that comprise histone H3 lysine 27 and 18 acetylation and transcription proteins BRD4L/S, CDK9, MED1, and RNA polymerase II. The BRD4-NUT/p300 chromatin condensation is key for activating transcription of pro-proliferation genes such as ALX1, resulting ALX1/Snail signaling and epithelial-to-mesenchymal transition. Our study provides a previously underappreciated structural mechanism illuminating BRD4-NUT's bipartite p300 recruitment and activation in NUT carcinoma that nucleates a feed-forward loop for propagating histone hyperacetylation and chromatin condensation to sustain aberrant anti-differentiation gene transcription and perpetual tumor cell growth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鳄鱼老四发布了新的文献求助10
刚刚
坦率道之发布了新的文献求助10
刚刚
刚刚
刚刚
求学狗发布了新的文献求助10
刚刚
打打应助糖卜里卜采纳,获得10
刚刚
kirren发布了新的文献求助10
1秒前
1秒前
莫西莫西发布了新的文献求助10
1秒前
2秒前
aiai发布了新的文献求助30
3秒前
陶醉书蕾完成签到 ,获得积分10
3秒前
3秒前
英俊的铭应助禾沐采纳,获得10
3秒前
4秒前
打打应助务实寄松采纳,获得10
4秒前
5秒前
5秒前
ewmmel发布了新的文献求助10
5秒前
超帅方盒完成签到,获得积分10
6秒前
dong发布了新的文献求助10
7秒前
7秒前
科研通AI5应助Pepsi采纳,获得10
7秒前
孜然西瓜发布了新的文献求助10
9秒前
机灵乐驹完成签到,获得积分10
9秒前
glitter完成签到,获得积分20
9秒前
why发布了新的文献求助10
10秒前
郝晨晰发布了新的文献求助10
10秒前
zmmm发布了新的文献求助10
10秒前
10秒前
pengchen完成签到 ,获得积分10
11秒前
11秒前
13秒前
打打应助认真初之采纳,获得10
13秒前
莫西莫西完成签到,获得积分10
13秒前
共享精神应助Anastasia采纳,获得10
13秒前
13秒前
14秒前
猪猪侠完成签到,获得积分10
14秒前
mingxi发布了新的文献求助10
14秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Experimental Design for the Life Sciences 200
Semiconductor Wafer Bonding: Science Technology, and Applications VI 200
Parallel Optimization 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835735
求助须知:如何正确求助?哪些是违规求助? 3378088
关于积分的说明 10502218
捐赠科研通 3097678
什么是DOI,文献DOI怎么找? 1705955
邀请新用户注册赠送积分活动 820760
科研通“疑难数据库(出版商)”最低求助积分说明 772274