A GNN-RNN Approach for Harnessing Geospatial and Temporal Information: Application to Crop Yield Prediction

地理空间分析 机器学习 计算机科学 深度学习 人工智能 领域知识 作物产量 预测能力 图形 比例(比率) 地理 遥感 地图学 理论计算机科学 生物 认识论 农学 哲学
作者
Joshua Fan,Junwen Bai,Zhiyun Li,Ariel Ortiz‐Bobea,Carla P. Gomes
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:36 (11): 11873-11881 被引量:86
标识
DOI:10.1609/aaai.v36i11.21444
摘要

Climate change is posing new challenges to crop-related concerns, including food insecurity, supply stability, and economic planning. Accurately predicting crop yields is crucial for addressing these challenges. However, this prediction task is exceptionally complicated since crop yields depend on numerous factors such as weather, land surface, and soil quality, as well as their interactions. In recent years, machine learning models have been successfully applied in this domain. However, these models either restrict their tasks to a relatively small region, or only study over a single or few years, which makes them hard to generalize spatially and temporally. In this paper, we introduce a novel graph-based recurrent neural network for crop yield prediction, to incorporate both geographical and temporal knowledge in the model, and further boost predictive power. Our method is trained, validated, and tested on over 2000 counties from 41 states in the US mainland, covering years from 1981 to 2019. As far as we know, this is the first machine learning method that embeds geographical knowledge in crop yield prediction and predicts crop yields at the county level nationwide. We also laid a solid foundation by comparing our model on a nationwide scale with other well-known baseline methods, including linear models, tree-based models, and deep learning methods. Experiments show that our proposed method consistently outperforms the existing state-of-the-art methods on various metrics, validating the effectiveness of geospatial and temporal information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
威武的蘑菇完成签到,获得积分10
1秒前
北冥完成签到 ,获得积分10
1秒前
2秒前
3秒前
3秒前
3秒前
古德day完成签到,获得积分10
6秒前
谦让的牛排完成签到 ,获得积分10
7秒前
kakashi发布了新的文献求助10
7秒前
sakuraxw发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
9秒前
竟何完成签到,获得积分10
9秒前
10秒前
nana完成签到,获得积分10
11秒前
浮游应助WYX采纳,获得10
11秒前
11秒前
量子星尘发布了新的文献求助10
14秒前
微米完成签到,获得积分10
15秒前
16秒前
16秒前
Orange应助zhuxu采纳,获得10
18秒前
小遇完成签到 ,获得积分10
18秒前
悠悠发布了新的文献求助10
19秒前
MMMV完成签到,获得积分10
20秒前
23秒前
小蘑菇应助高挑的迎夏采纳,获得10
23秒前
tannie完成签到 ,获得积分0
24秒前
隐形珊完成签到,获得积分10
26秒前
希望天下0贩的0应助niniyiya采纳,获得10
26秒前
27秒前
27秒前
28秒前
Orange应助圈圈采纳,获得10
30秒前
aa完成签到,获得积分10
31秒前
愉快若剑发布了新的文献求助10
32秒前
Godlove发布了新的文献求助10
32秒前
kkk发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633720
求助须知:如何正确求助?哪些是违规求助? 4729357
关于积分的说明 14986552
捐赠科研通 4791560
什么是DOI,文献DOI怎么找? 2558957
邀请新用户注册赠送积分活动 1519405
关于科研通互助平台的介绍 1479650