When CNNs Meet Vision Transformer: A Joint Framework for Remote Sensing Scene Classification

计算机科学 人工智能 遥感 接头(建筑物) 模式识别(心理学) 计算机视觉 变压器 地理 工程类 电气工程 电压 建筑工程
作者
Peifang Deng,Kejie Xu,Hong Huang
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5 被引量:140
标识
DOI:10.1109/lgrs.2021.3109061
摘要

Scene classification is an indispensable part of remote sensing image interpretation, and various convolutional neural network (CNN)-based methods have been explored to improve classification accuracy. Although they have shown good classification performance on high-resolution remote sensing (HRRS) images, discriminative ability of extracted features is still limited. In this letter, a high-performance joint framework combined CNNs and vision transformer (ViT) (CTNet) is proposed to further boost the discriminative ability of features for HRRS scene classification. The CTNet method contains two modules, including the stream of ViT (T-stream) and the stream of CNNs (C-stream). For the T-stream, flattened image patches are sent into pretrained ViT model to mine semantic features in HRRS images. To complement with T-stream, pretrained CNN is transferred to extract local structural features in the C-stream. Then, semantic features and structural features are concatenated to predict labels of unknown samples. Finally, a joint loss function is developed to optimize the joint model and increase the intraclass aggregation. The highest accuracies on the aerial image dataset (AID) and Northwestern Polytechnical University (NWPU)-RESISC45 datasets obtained by the CTNet method are 97.70% and 95.49%, respectively. The classification results reveal that the proposed method achieves high classification performance compared with other state-of-the-art (SOTA) methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助耍酷的绝施采纳,获得10
1秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
天真的大船完成签到 ,获得积分10
4秒前
123完成签到,获得积分10
5秒前
5秒前
Ava应助Dr.c采纳,获得10
6秒前
finale71完成签到 ,获得积分10
7秒前
7秒前
哞哞发布了新的文献求助200
8秒前
彭于晏应助zzzp采纳,获得10
8秒前
万能图书馆应助xieyuanxing采纳,获得10
9秒前
特昂唐完成签到 ,获得积分10
10秒前
YY发布了新的文献求助10
11秒前
11秒前
研友_LNMmW8发布了新的文献求助10
12秒前
14秒前
艾琳克斯完成签到 ,获得积分10
15秒前
王森发布了新的文献求助10
15秒前
16秒前
17秒前
17秒前
17秒前
李健应助11采纳,获得10
17秒前
17秒前
17秒前
123发布了新的文献求助20
19秒前
隐形曼青应助不吃橘子采纳,获得10
19秒前
阿冰发布了新的文献求助30
20秒前
LCX完成签到,获得积分20
20秒前
的风格发布了新的文献求助10
20秒前
桐桐应助墨斗在拼搏采纳,获得10
20秒前
Dr.c发布了新的文献求助10
21秒前
22秒前
Noah完成签到 ,获得积分0
22秒前
xieyuanxing发布了新的文献求助10
22秒前
22秒前
奋斗土豆关注了科研通微信公众号
22秒前
Zx_1993应助anny2022采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526879
求助须知:如何正确求助?哪些是违规求助? 4616832
关于积分的说明 14556118
捐赠科研通 4555346
什么是DOI,文献DOI怎么找? 2496326
邀请新用户注册赠送积分活动 1476628
关于科研通互助平台的介绍 1448142