Short-term traffic flow prediction based on a hybrid optimization algorithm

流量(计算机网络) 算法 离群值 计算机科学 非线性系统 数学优化 多项式的 支持向量机 数学 人工智能 计算机安全 量子力学 物理 数学分析
作者
He Yan,Tian’an Zhang,Yong Qi,Dong-Jun Yu
出处
期刊:Applied Mathematical Modelling [Elsevier BV]
卷期号:102: 385-404 被引量:6
标识
DOI:10.1016/j.apm.2021.09.040
摘要

• A robust method is proposed to alleviate the effect of traffic data with outliers. • A comprehensive traffic flow prediction indicator system is established in this paper. • We hybridize polynomial and Gaussian kernel to build nonlinear version of our method. • Parameters of the proposed method are optimized by Fruit Fly Optimization Algorithm. A novel least squares twin support vector regression method is proposed based on the robust L 1 -norm distance to alleviate the negative effect of traffic data with outliers. Although there is some known work for the short-term traffic flow prediction problems, their efficacy depends heavily on the collected traffic data, which are often affected by various external factors ( e.g. weather, traffic jam or accident), leading to errors and missing data. This makes it difficult to pick an effective method that accurately predicts the traffic state. As a contribution of this paper, an iterative algorithm is designed to solve the non-smooth L 1 -norm terms of our method; its convergence also proved. Further, a comprehensive traffic flow indicator system based on speed, traffic flow, occupancy and ample degree is utilized in this paper. We also extend the proposed method to a nonlinear version by hybridizing the polynomial kernel and radial basis function kernel, where the weight coefficient of hybrid kernel is determined by the change tendency of traffic data. To promote the prediction performance, the parameters of our nonlinear method are optimized by adaptive fruit fly optimization algorithm. Extensive experiments on real traffic data are performed to evaluate our model. The results indicate that the newly constructed model yields better prediction performance and robustness than other models in various experimental settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助义气尔芙采纳,获得10
刚刚
shuo完成签到,获得积分10
1秒前
姚归尘完成签到,获得积分10
1秒前
2秒前
001发布了新的文献求助10
2秒前
隐形曼青应助redamancy采纳,获得10
2秒前
SciGPT应助刘刘刘医生采纳,获得10
3秒前
3秒前
阳光的访烟完成签到,获得积分10
3秒前
小魔兽完成签到,获得积分10
3秒前
leehoo发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
ccc关闭了ccc文献求助
4秒前
科研通AI5应助锅锅采纳,获得10
5秒前
5秒前
5秒前
peanut完成签到,获得积分10
6秒前
Jenny完成签到,获得积分10
6秒前
111关注了科研通微信公众号
6秒前
7秒前
7秒前
丹汶亦发布了新的文献求助10
7秒前
奇奇完成签到,获得积分10
8秒前
9秒前
Kins发布了新的文献求助10
9秒前
叶子小丙完成签到,获得积分10
10秒前
醉熏的绝音完成签到,获得积分10
10秒前
帆楼完成签到,获得积分10
10秒前
学术交流111完成签到,获得积分10
11秒前
哈牛发布了新的文献求助10
11秒前
清新的寄风完成签到 ,获得积分10
11秒前
柴柴子完成签到 ,获得积分10
11秒前
香蕉觅云应助zcc111采纳,获得10
12秒前
在水一方应助泡面采纳,获得10
12秒前
13秒前
jyyg完成签到,获得积分10
13秒前
陈哈哈完成签到,获得积分10
13秒前
归尘发布了新的文献求助10
14秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
System of systems: When services and products become indistinguishable 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813166
求助须知:如何正确求助?哪些是违规求助? 3357670
关于积分的说明 10387663
捐赠科研通 3074873
什么是DOI,文献DOI怎么找? 1689037
邀请新用户注册赠送积分活动 812539
科研通“疑难数据库(出版商)”最低求助积分说明 767144