FordNet: Recommending traditional Chinese medicine formula via deep neural network integrating phenotype and molecule

人工智能 计算机科学 表型 人工神经网络 计算生物学 生物 医学 遗传学 基因
作者
Wuai Zhou,Kuo Yang,Jianyang Zeng,Xinxing Lai,Xin Wang,Chaofan Ji,Yan Li,Peng Zhang,Shao Li
出处
期刊:Pharmacological Research [Elsevier]
卷期号:173: 105752-105752 被引量:86
标识
DOI:10.1016/j.phrs.2021.105752
摘要

Traditional Chinese medicine (TCM) formula is widely used for thousands of years in clinical practice. With the development of artificial intelligence, deep learning models may help doctors prescribe reasonable formulas. Meanwhile, current studies of formula recommendation only focus on the observable clinical symptoms and lack of molecular information. Here, inspired by the theory of TCM network pharmacology, we propose an intelligent formula recommendation system based on deep learning (FordNet), fusing the information of phenotype and molecule. We collected more than 20,000 electronic health records from TCM Master Li Jiren's experience from 2013 to March 2020. In the FordNet system, the feature of diagnosis description is extracted by convolution neural network and the feature of TCM formula is extracted by network embedding, which fusing the molecular information. A hierarchical sampling strategy for data augmentation is designed to effectively learn training samples. Based on the expanded samples, a deep neural network based quantitative optimization model is developed for TCM formula recommendation. FordNet performs significantly better than baseline methods (hit ratio of top 10 improved by 46.9% compared with the best baseline random forest method). Moreover, the molecular information helps FordNet improve 17.3% hit ratio compared with the model using only macro information. Clinical evaluation shows that FordNet can well learn the effective experience of TCM Master and obtain excellent recommendation results. Our study, for the first time, proposes an intelligent recommendation system for TCM formula integrating phenotype and molecule information, which has potential to improve clinical diagnosis and treatment, and promote the shift of TCM research pattern from "experience based, macro" to "data based, macro-micro combined" as well as the development of TCM network pharmacology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
safari完成签到 ,获得积分10
5秒前
任伟超完成签到,获得积分10
7秒前
8秒前
9秒前
白白不喽完成签到 ,获得积分10
11秒前
13秒前
kyt_vip完成签到,获得积分10
14秒前
哈哈发布了新的文献求助10
16秒前
yellowonion完成签到 ,获得积分10
17秒前
stiger完成签到,获得积分10
31秒前
航行天下完成签到 ,获得积分10
35秒前
1002SHIB完成签到,获得积分10
37秒前
jojo完成签到 ,获得积分10
37秒前
吼吼哈嘿完成签到 ,获得积分10
39秒前
41秒前
46秒前
犹豫梦菡完成签到 ,获得积分10
46秒前
李健应助ceeray23采纳,获得20
47秒前
JLLi发布了新的文献求助10
51秒前
貔貅完成签到 ,获得积分10
51秒前
查查完成签到 ,获得积分10
53秒前
研友_nqv5WZ完成签到 ,获得积分10
58秒前
科研小趴菜完成签到 ,获得积分10
1分钟前
JLLi完成签到,获得积分10
1分钟前
1分钟前
Leo完成签到 ,获得积分10
1分钟前
奥丁不言语完成签到 ,获得积分10
1分钟前
1分钟前
丢星完成签到 ,获得积分10
1分钟前
ceeray23发布了新的文献求助20
1分钟前
又又完成签到,获得积分10
1分钟前
久久完成签到 ,获得积分10
1分钟前
李健应助YYYYYYYYY采纳,获得10
1分钟前
跳跃的鹏飞完成签到 ,获得积分0
1分钟前
笨笨忘幽完成签到,获得积分0
1分钟前
skj你考六级完成签到,获得积分10
1分钟前
1分钟前
大一京城完成签到 ,获得积分10
1分钟前
CLTTT完成签到,获得积分0
2分钟前
Prometheusss完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5529503
求助须知:如何正确求助?哪些是违规求助? 4618553
关于积分的说明 14562904
捐赠科研通 4557635
什么是DOI,文献DOI怎么找? 2497672
邀请新用户注册赠送积分活动 1477855
关于科研通互助平台的介绍 1449403