FordNet: Recommending traditional Chinese medicine formula via deep neural network integrating phenotype and molecule

人工智能 计算机科学 表型 人工神经网络 计算生物学 生物 医学 遗传学 基因
作者
Wuai Zhou,Kuo Yang,Jianyang Zeng,Xinxing Lai,Xin Wang,Chaofan Ji,Yan Li,Peng Zhang,Shao Li
出处
期刊:Pharmacological Research [Elsevier BV]
卷期号:173: 105752-105752 被引量:61
标识
DOI:10.1016/j.phrs.2021.105752
摘要

Traditional Chinese medicine (TCM) formula is widely used for thousands of years in clinical practice. With the development of artificial intelligence, deep learning models may help doctors prescribe reasonable formulas. Meanwhile, current studies of formula recommendation only focus on the observable clinical symptoms and lack of molecular information. Here, inspired by the theory of TCM network pharmacology, we propose an intelligent formula recommendation system based on deep learning (FordNet), fusing the information of phenotype and molecule. We collected more than 20,000 electronic health records from TCM Master Li Jiren's experience from 2013 to March 2020. In the FordNet system, the feature of diagnosis description is extracted by convolution neural network and the feature of TCM formula is extracted by network embedding, which fusing the molecular information. A hierarchical sampling strategy for data augmentation is designed to effectively learn training samples. Based on the expanded samples, a deep neural network based quantitative optimization model is developed for TCM formula recommendation. FordNet performs significantly better than baseline methods (hit ratio of top 10 improved by 46.9% compared with the best baseline random forest method). Moreover, the molecular information helps FordNet improve 17.3% hit ratio compared with the model using only macro information. Clinical evaluation shows that FordNet can well learn the effective experience of TCM Master and obtain excellent recommendation results. Our study, for the first time, proposes an intelligent recommendation system for TCM formula integrating phenotype and molecule information, which has potential to improve clinical diagnosis and treatment, and promote the shift of TCM research pattern from "experience based, macro" to "data based, macro-micro combined" as well as the development of TCM network pharmacology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小高同学发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
Queen完成签到,获得积分10
2秒前
星空之下ssr完成签到,获得积分10
2秒前
动听的谷秋完成签到 ,获得积分10
3秒前
fin完成签到,获得积分10
3秒前
落叶捎来讯息完成签到 ,获得积分10
4秒前
Zachary完成签到,获得积分10
4秒前
Hello应助我是雅婷采纳,获得10
4秒前
子枫完成签到,获得积分10
4秒前
4秒前
pure完成签到,获得积分10
4秒前
蓝桉完成签到 ,获得积分10
4秒前
chai完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
aa完成签到,获得积分10
5秒前
FR完成签到,获得积分10
6秒前
慕青应助M20小陈采纳,获得10
6秒前
迷路易形完成签到,获得积分10
6秒前
文献啊文献完成签到,获得积分10
6秒前
6秒前
7秒前
端庄的皮卡丘完成签到,获得积分10
7秒前
yue发布了新的文献求助10
7秒前
Julie完成签到 ,获得积分10
7秒前
7秒前
CodeCraft应助我是雅婷采纳,获得10
7秒前
难过的小甜瓜完成签到,获得积分10
8秒前
泥撑完成签到,获得积分10
8秒前
凑阿库娅发布了新的文献求助10
8秒前
xy发布了新的文献求助10
8秒前
Grinder发布了新的文献求助10
8秒前
香蕉觅云应助12day采纳,获得10
9秒前
Dark_Moon应助BruceQ采纳,获得50
9秒前
小高同学完成签到,获得积分10
9秒前
KKLD发布了新的文献求助10
9秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795803
求助须知:如何正确求助?哪些是违规求助? 3340820
关于积分的说明 10302439
捐赠科研通 3057329
什么是DOI,文献DOI怎么找? 1677679
邀请新用户注册赠送积分活动 805534
科研通“疑难数据库(出版商)”最低求助积分说明 762642