花青素
MYB公司
生物
牡丹
基因
调节基因
转录组
结构基因
打开阅读框
遗传学
基因表达
植物
肽序列
突变体
作者
Yanzhao Zhang,Shuzhen Xu,Huiping Ma,Xujia Duan,Shouxin Gao,Xiaojun Zhou,Yanwei Cheng
标识
DOI:10.1016/j.plaphy.2021.04.034
摘要
Tree peony (Paeonia suffruticosa Andr.) is a well-known ornamental flower in China with diverse colors. Flower color is one of the most important economic characteristics of tree peony and is mainly determined by anthocyanins. In this study, we cloned a PsMYB58 gene, which contained a 654 bp open reading frame (ORF), encoding a polypeptide of 218 amino acids. Sequence and phylogenetic analysis indicated that PsMYB58 is an anthocyanin regulatory R2R3-MYB gene. The transcription levels of PsMYB58 in different developmental stages of tree peony flowers were similar to those of the anthocyanin biosynthetic genes PsCHS, PsCHI, PsDFR, and PsANS. A bimolecular fluorescence complementation assay showed that PsMYB58 interacted with PsbHLH1 and PsbHLH3 in vivo. The overexpression of PsMYB58 in tobacco enhanced anthocyanin accumulation in various organs. Comparative transcriptome analysis showed that 943 genes were upregulated and 1203 downregulated in PsMYB58 transgenic tobacco, among which genes involved in the anthocyanin pathway were positively activated. Real-time quantitative PCR analysis verified that anthocyanin biosynthetic genes, including NtCHS, NtCHI, NtF3H, NtF3′H, NtDFR, and NtANS, and an anthocyanin regulatory bHLH gene, NtAN1b, were significantly upregulated in PsMYB58 transgenic tobacco. Our results indicated that PsMYB58 is a positive anthocyanin regulator in tree peony flowers. In summary, the functional identification of PsMYB58 furthers our understanding of the mechanism of peony flower color formation, thus providing a foundation for flower color improvement and molecular breeding.
科研通智能强力驱动
Strongly Powered by AbleSci AI