PremPS: Predicting the impact of missense mutations on protein stability

错义突变 水准点(测量) 理论(学习稳定性) 蛋白质设计 计算机科学 蛋白质结构预测 计算生物学 突变 蛋白质结构 参数化复杂度 蛋白质测序 人工智能 机器学习 生物 算法 遗传学 肽序列 基因 生物化学 大地测量学 地理
作者
Yuting Chen,Haoyu Lu,Ning Zhang,Zefeng Zhu,Shuqin Wang,Minghui Li
出处
期刊:PLOS Computational Biology [Public Library of Science]
卷期号:16 (12): e1008543-e1008543 被引量:225
标识
DOI:10.1371/journal.pcbi.1008543
摘要

Computational methods that predict protein stability changes induced by missense mutations have made a lot of progress over the past decades. Most of the available methods however have very limited accuracy in predicting stabilizing mutations because existing experimental sets are dominated by mutations reducing protein stability. Moreover, few approaches could consistently perform well across different test cases. To address these issues, we developed a new computational method PremPS to more accurately evaluate the effects of missense mutations on protein stability. The PremPS method is composed of only ten evolutionary- and structure-based features and parameterized on a balanced dataset with an equal number of stabilizing and destabilizing mutations. A comprehensive comparison of the predictive performance of PremPS with other available methods on nine benchmark datasets confirms that our approach consistently outperforms other methods and shows considerable improvement in estimating the impacts of stabilizing mutations. A protein could have multiple structures available, and if another structure of the same protein is used, the predicted change in stability for structure-based methods might be different. Thus, we further estimated the impact of using different structures on prediction accuracy, and demonstrate that our method performs well across different types of structures except for low-resolution structures and models built based on templates with low sequence identity. PremPS can be used for finding functionally important variants, revealing the molecular mechanisms of functional influences and protein design. PremPS is freely available at https://lilab.jysw.suda.edu.cn/research/PremPS/ , which allows to do large-scale mutational scanning and takes about four minutes to perform calculations for a single mutation per protein with ~ 300 residues and requires ~ 0.4 seconds for each additional mutation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aqua完成签到,获得积分10
刚刚
以亦发布了新的文献求助10
刚刚
1秒前
苹果丑完成签到,获得积分0
3秒前
清颜发布了新的文献求助10
4秒前
小黑点发布了新的文献求助10
4秒前
俞璐发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
shinn发布了新的文献求助10
6秒前
Micheal完成签到 ,获得积分10
7秒前
9秒前
9秒前
box1221完成签到 ,获得积分10
9秒前
11秒前
12秒前
打打应助俞璐采纳,获得10
12秒前
单纯一笑完成签到,获得积分10
13秒前
13秒前
OHDJSZMS完成签到,获得积分10
14秒前
希望天下0贩的0应助香蕉采纳,获得10
15秒前
15秒前
徐梦欣关注了科研通微信公众号
15秒前
无极道人发布了新的文献求助50
15秒前
16秒前
卿久久完成签到,获得积分10
16秒前
16秒前
苹果丑发布了新的文献求助20
18秒前
18秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
科研通AI6应助HJJHJH采纳,获得20
19秒前
虚幻中蓝发布了新的文献求助10
19秒前
22秒前
box1221关注了科研通微信公众号
22秒前
22秒前
风控手完成签到,获得积分10
22秒前
阳光完成签到,获得积分10
23秒前
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4284941
求助须知:如何正确求助?哪些是违规求助? 3812379
关于积分的说明 11941834
捐赠科研通 3458875
什么是DOI,文献DOI怎么找? 1896986
邀请新用户注册赠送积分活动 945639
科研通“疑难数据库(出版商)”最低求助积分说明 849351