Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance

山崩 机器学习 计算机科学 人工智能 算法 数据挖掘 工程类 岩土工程
作者
Abdelaziz Merghadi,Ali P. Yunus,Jie Dou,Jim Whiteley,Binh Thai Pham,Dieu Tien Bui,Ram Avtar,Abderrahmane Boumezbeur
出处
期刊:Earth-Science Reviews [Elsevier BV]
卷期号:207: 103225-103225 被引量:960
标识
DOI:10.1016/j.earscirev.2020.103225
摘要

Landslides are one of the catastrophic natural hazards that occur in mountainous areas, leading to loss of life, damage to properties, and economic disruption. Landslide susceptibility models prepared in a Geographic Information System (GIS) integrated environment can be key for formulating disaster prevention measures and mitigating future risk. The accuracy and precision of susceptibility models is evolving rapidly from opinion-driven models and statistical learning toward increased use of machine learning techniques. Critical reviews on opinion-driven models and statistical learning in landslide susceptibility mapping have been published, but an overview of current machine learning models for landslide susceptibility studies, including background information on their operation, implementation, and performance is currently lacking. Here, we present an overview of the most popular machine learning techniques available for landslide susceptibility studies. We find that only a handful of researchers use machine learning techniques in landslide susceptibility mapping studies. Therefore, we present the architecture of various Machine Learning (ML) algorithms in plain language, so as to be understandable to a broad range of geoscientists. Furthermore, a comprehensive study comparing the performance of various ML algorithms is absent from the current literature, making an assessment of comparative performance and predictive capabilities difficult. We therefore undertake an extensive analysis and comparison between different ML techniques using a case study from Algeria. We summarize and discuss the algorithm's accuracies, advantages and limitations using a range of evaluation criteria. We note that tree-based ensemble algorithms achieve excellent results compared to other machine learning algorithms and that the Random Forest algorithm offers robust performance for accurate landslide susceptibility mapping with only a small number of adjustments required before training the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尊敬的琳关注了科研通微信公众号
1秒前
xiaofengche完成签到,获得积分10
4秒前
4秒前
小白完成签到,获得积分10
4秒前
努力的小李完成签到,获得积分20
4秒前
czy完成签到,获得积分10
5秒前
5秒前
PDIF-CN2发布了新的文献求助10
6秒前
6秒前
adam发布了新的文献求助10
6秒前
doki完成签到,获得积分10
6秒前
7秒前
kk完成签到,获得积分10
8秒前
天天快乐应助重要的水壶采纳,获得10
8秒前
WZ完成签到,获得积分10
9秒前
9秒前
生动的白昼完成签到,获得积分20
9秒前
益笙鸿老板完成签到 ,获得积分10
9秒前
orixero应助zxh采纳,获得10
10秒前
10秒前
11秒前
闪闪平灵完成签到,获得积分10
11秒前
Rui_Rui应助gwfew采纳,获得10
11秒前
Bink发布了新的文献求助10
12秒前
三度和弦发布了新的文献求助10
12秒前
Lucas应助风趣的寻凝采纳,获得10
12秒前
asheng98完成签到,获得积分10
12秒前
FashionBoy应助nicemice采纳,获得10
13秒前
SciGPT应助酷酷的杨采纳,获得10
13秒前
14秒前
笨笨芝麻发布了新的文献求助20
15秒前
16秒前
细心的如天完成签到,获得积分10
16秒前
风趣蜡烛完成签到 ,获得积分10
19秒前
hy发布了新的文献求助10
19秒前
20秒前
bluntzhang完成签到,获得积分10
21秒前
早安发布了新的文献求助30
21秒前
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287680
求助须知:如何正确求助?哪些是违规求助? 4439796
关于积分的说明 13823033
捐赠科研通 4321964
什么是DOI,文献DOI怎么找? 2372222
邀请新用户注册赠送积分活动 1367807
关于科研通互助平台的介绍 1331322