光电效应
暗物质
物理
硅
吸收(声学)
吸收截面
灵敏度(控制系统)
电子
原子物理学
横截面(物理)
天体物理学
光电子学
光学
核物理学
天文
电子工程
工程类
作者
B. von Krosigk,M. J. Wilson,C. Stanford,B. Cabrera,R. Calkins,D. Jardin,Noah Kurinsky,F. Ponce,Chih-Pan Wu
出处
期刊:Physical review
[American Physical Society]
日期:2021-09-08
卷期号:104 (6)
被引量:3
标识
DOI:10.1103/physrevd.104.063002
摘要
Recent breakthroughs in cryogenic silicon detector technology allow for the observation of single electron-hole pairs released via particle interactions within the target material. This implies sensitivity to energy depositions as low as the smallest band gap, which is $\ensuremath{\sim}1.2\text{ }\text{ }\mathrm{eV}$ for silicon, and therefore sensitivity to $\mathrm{eV}/{c}^{2}$-scale bosonic dark matter and to thermal dark matter at masses below $100\text{ }\text{ }\mathrm{MeV}/{c}^{2}$. Various interaction channels that can probe the lowest currently accessible masses in direct searches are related to standard photoelectric absorption. In any of these respective dark matter signal models any uncertainty on the photoelectric absorption cross section is propagated into the resulting exclusion limit or into the significance of a potential observation. Using first-time precision measurements of the photoelectric absorption cross section in silicon recently performed at Stanford University, this article examines the importance having accurate knowledge of this parameter at low energies and cryogenic temperatures for these dark matter searches.
科研通智能强力驱动
Strongly Powered by AbleSci AI