Machine learning approaches for risk assessment of peripherally inserted Central catheter-related vein thrombosis in hospitalized patients with cancer

医学 外周穿刺中心静脉导管 血栓形成 入射(几何) 癌症 前瞻性队列研究 深静脉 导管 队列 静脉血栓形成 队列研究 急诊医学 外科 内科学 光学 物理
作者
Shanshan Liu,Fengyi Zhang,Lingling Xie,Sheng Wang,Qiufen Xiang,Zhiying Yue,Yue Feng,Yanmeng Yang,Junying Li,Li Luo,Chunhua Yu
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:129: 175-183 被引量:29
标识
DOI:10.1016/j.ijmedinf.2019.06.001
摘要

The aim of this study was to conduct an effective assessment of peripherally inserted central venous catheter (PICC)-related thrombosis based on machine learning (ML) techniques considering genotype. We conducted a prospective cohort study of 348 cancer patients with PICCs who were admitted to the Department of Oncology of West China Hospital, over a 1-year period, between February 1, 2016, and February 31, 2017. We obtained the clinical attributes, onset, duration, and outcome of thrombosis from electronic health records. We assigned all patients to either the training or testing set, and used four models for comparison with the currently used criteria. ML methods showed good efficiency in PICC-related thrombosis risk assessment (with areas under the curve of 0.7733, 0.7869, 0.7833, and 0.7717 respectively) and outperform the currently used criteria (Seeley), which did not identify any positive case. Our research confirmed that ML approaches are powerful tools to identify cancer patients with a high risk of PICC-related thrombosis, which outperform the currently used criteria (Seeley). Moreover, our research also offers some indications on the predictors and risk factors of PICC-related thrombosis. From our research, more-precise assessments can be performed in cancer patients with PICCs to help decide the prophylaxis and effectively lower the incidence of PICC-related thrombosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悦耳的荔枝完成签到,获得积分20
2秒前
沙里飞完成签到 ,获得积分10
5秒前
5秒前
zzzzzzzz发布了新的文献求助10
6秒前
懒羊羊大王完成签到 ,获得积分10
6秒前
求知若渴完成签到,获得积分10
6秒前
枫之林完成签到,获得积分10
8秒前
xff完成签到,获得积分20
8秒前
冰魂应助金木木采纳,获得20
10秒前
肥宅小周发布了新的文献求助10
11秒前
ru完成签到 ,获得积分10
12秒前
chezi完成签到,获得积分10
12秒前
13秒前
zzzzzzzz完成签到,获得积分10
14秒前
善学以致用应助谢富杰采纳,获得10
15秒前
逸龙完成签到,获得积分10
17秒前
小化化爱学习完成签到,获得积分10
17秒前
Green完成签到,获得积分10
17秒前
小周完成签到 ,获得积分10
17秒前
qiuli完成签到,获得积分10
18秒前
18秒前
19秒前
TaoJ发布了新的文献求助10
21秒前
xff发布了新的文献求助30
22秒前
蒋时晏应助腼腆的立诚采纳,获得30
23秒前
水本无忧87完成签到,获得积分10
24秒前
小陈子完成签到,获得积分10
28秒前
平常天佑完成签到,获得积分10
28秒前
30秒前
31秒前
了0完成签到 ,获得积分10
32秒前
木云浅夏发布了新的文献求助10
34秒前
小李老博应助小奇采纳,获得10
34秒前
科研通AI5应助淡然白安采纳,获得10
36秒前
幽默语兰发布了新的文献求助10
36秒前
成懂事长发布了新的文献求助10
36秒前
snoke完成签到,获得积分10
38秒前
单身的溪流完成签到 ,获得积分10
38秒前
Xiaojiu完成签到 ,获得积分10
38秒前
aaaaaa完成签到 ,获得积分10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777834
求助须知:如何正确求助?哪些是违规求助? 3323321
关于积分的说明 10213925
捐赠科研通 3038575
什么是DOI,文献DOI怎么找? 1667549
邀请新用户注册赠送积分活动 798161
科研通“疑难数据库(出版商)”最低求助积分说明 758290