Machine learning approaches for risk assessment of peripherally inserted Central catheter-related vein thrombosis in hospitalized patients with cancer

医学 外周穿刺中心静脉导管 血栓形成 入射(几何) 癌症 前瞻性队列研究 深静脉 导管 队列 静脉血栓形成 队列研究 急诊医学 外科 内科学 光学 物理
作者
Shanshan Liu,Fengyi Zhang,Lingling Xie,Sheng Wang,Qiufen Xiang,Zhiying Yue,Yue Feng,Yanmeng Yang,Junying Li,Li Luo,Chunhua Yu
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:129: 175-183 被引量:29
标识
DOI:10.1016/j.ijmedinf.2019.06.001
摘要

The aim of this study was to conduct an effective assessment of peripherally inserted central venous catheter (PICC)-related thrombosis based on machine learning (ML) techniques considering genotype. We conducted a prospective cohort study of 348 cancer patients with PICCs who were admitted to the Department of Oncology of West China Hospital, over a 1-year period, between February 1, 2016, and February 31, 2017. We obtained the clinical attributes, onset, duration, and outcome of thrombosis from electronic health records. We assigned all patients to either the training or testing set, and used four models for comparison with the currently used criteria. ML methods showed good efficiency in PICC-related thrombosis risk assessment (with areas under the curve of 0.7733, 0.7869, 0.7833, and 0.7717 respectively) and outperform the currently used criteria (Seeley), which did not identify any positive case. Our research confirmed that ML approaches are powerful tools to identify cancer patients with a high risk of PICC-related thrombosis, which outperform the currently used criteria (Seeley). Moreover, our research also offers some indications on the predictors and risk factors of PICC-related thrombosis. From our research, more-precise assessments can be performed in cancer patients with PICCs to help decide the prophylaxis and effectively lower the incidence of PICC-related thrombosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sea_U应助乐观的白开水采纳,获得10
刚刚
MM发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
2秒前
2秒前
xinxinxin91发布了新的文献求助10
2秒前
2953685951发布了新的文献求助10
3秒前
wyhhh完成签到,获得积分10
3秒前
剑舞红颜笑完成签到 ,获得积分10
3秒前
3秒前
franklin_fsz应助E1gb采纳,获得200
3秒前
Cheny完成签到 ,获得积分10
4秒前
hhh123完成签到,获得积分10
4秒前
感动手链发布了新的文献求助10
4秒前
5秒前
田様应助BisonHamster采纳,获得10
5秒前
6秒前
Owen应助Yuki采纳,获得10
6秒前
RHJ发布了新的文献求助10
7秒前
JamesPei应助2953685951采纳,获得10
7秒前
mark707完成签到,获得积分10
7秒前
敏感的鼠标完成签到 ,获得积分10
7秒前
7icccen发布了新的文献求助10
7秒前
hhh发布了新的文献求助10
7秒前
魔幻巨人应助fffff11111采纳,获得10
7秒前
负责蜜蜂发布了新的文献求助10
8秒前
Orange应助Uqi_Lee采纳,获得10
8秒前
jszz应助霸气若男采纳,获得10
8秒前
yyyyyz完成签到,获得积分10
9秒前
yuyuyu完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
yy发布了新的文献求助10
12秒前
12秒前
13秒前
Azure发布了新的文献求助30
13秒前
黄晶晶完成签到 ,获得积分10
13秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5349560
求助须知:如何正确求助?哪些是违规求助? 4483376
关于积分的说明 13955510
捐赠科研通 4382432
什么是DOI,文献DOI怎么找? 2407855
邀请新用户注册赠送积分活动 1400519
关于科研通互助平台的介绍 1373781