Abstract WP71: Multicenter ALADIN: Automated Large Artery Occlusion Detection in Stroke Imaging Using Artificial Intelligence

医学 冲程(发动机) 闭塞 回顾性队列研究 血管造影 急性中风 计算机断层血管造影 放射科 算法 内科学 计算机科学 机械工程 工程类 组织纤溶酶原激活剂
作者
Gabriel Martins Rodrigues,Clara Barreira,Michael T. Froehler,Blaise Baxter,Thomas Devlin,Jaims Lim,Alhamza R Al‐Bayati,Mehdi Bouslama,Diogo C Haussen,Raul G Nogueira
出处
期刊:Stroke [Lippincott Williams & Wilkins]
卷期号:50 (Suppl_1) 被引量:2
标识
DOI:10.1161/str.50.suppl_1.wp71
摘要

Introduction: Large vessel occlusion (LVO) may account for up to 40% of all acute ischemic strokes (AIS) and may be associated with worse patient prognosis, being responsible for 60% of dependency and more than 90% of mortality after AIS. Therefore, accurate and rapid identification of LVO and notification of specialists is critical to maximizing the benefit of proven reperfusion therapies. Recent advances in artificial intelligence technology have facilitated the development of automated LVO detection on computed tomography angiography (CTA) imaging. This study evaluated the performance of the Viz LVO algorithm in AIS patients treated at four comprehensive stroke centers. Methods: We performed a multicenter retrospective analysis of 800 CTAs from 750 AIS patients admitted to three comprehensive stroke centers between 2014 and 2018. All studies were analyzed by the latest version of Viz LVO algorithm (version 4.1.2) and the performance was compared to expert neurointerventionalists’ reports. Algorithm run-time and notification time through the Viz platform times were also recorded for each CTA. Results: The Viz LVO algorithm demonstrated 92% sensitivity, 90% specificity in the analysis of 750 CTAs. The mean and maximum run time of the algorithm were 3 minutes and 6 minutes, respectively. Furthermore, mean time to notification was 6 minutes, with a maximum time to notification of 9 minutes. Conclusions: This multicenter retrospective study demonstrates fast and accurate performance of the Viz LVO algorithm in the detection and notification of LVOs on CTAs from three comprehensive stroke centers. Using artificial intelligence, this algorithm may permit early and accurate identification of LVO stroke patients and timely notification to emergency teams, enabling quick decision-making for reperfusion therapies or transfer to specialized centers if needed. Additional studies are required to demonstrate impact on the stroke workflow that result in improved patient outcomes, operational efficiencies, and cost reductions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明亮无颜完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
Nostalgia_9完成签到,获得积分10
1秒前
天竹子发布了新的文献求助10
2秒前
YY完成签到,获得积分10
2秒前
早点睡觉完成签到,获得积分20
4秒前
4秒前
甪用发布了新的文献求助10
4秒前
4秒前
4秒前
研友_VZG7GZ应助十亿少女梦采纳,获得10
5秒前
搜集达人应助周晏平采纳,获得10
6秒前
6秒前
彭于晏应助夕余采纳,获得20
6秒前
现代的芹完成签到 ,获得积分10
7秒前
一念初见发布了新的文献求助10
9秒前
小吕快跑发布了新的文献求助10
9秒前
东山道友完成签到 ,获得积分10
11秒前
ddd完成签到,获得积分10
13秒前
13秒前
gujianhua发布了新的文献求助20
13秒前
14秒前
南木楠完成签到,获得积分10
14秒前
WaveletZ完成签到,获得积分10
15秒前
大方大船完成签到,获得积分10
16秒前
zgt01应助可靠的中心采纳,获得10
16秒前
动漫大师发布了新的文献求助10
17秒前
丫丫完成签到 ,获得积分10
18秒前
脸小呆呆发布了新的文献求助10
18秒前
19秒前
19秒前
听春风完成签到 ,获得积分10
20秒前
zjujirenjie发布了新的文献求助10
20秒前
20秒前
菜菜完成签到,获得积分10
21秒前
23秒前
25秒前
夕余发布了新的文献求助20
25秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784418
求助须知:如何正确求助?哪些是违规求助? 3329484
关于积分的说明 10242453
捐赠科研通 3044982
什么是DOI,文献DOI怎么找? 1671481
邀请新用户注册赠送积分活动 800346
科研通“疑难数据库(出版商)”最低求助积分说明 759372