Role of Polyacrylic Acid (PAA) Binder on the Solid Electrolyte Interphase in Silicon Anodes

聚丙烯酸 电解质 阳极 化学工程 材料科学 X射线光电子能谱 锂(药物) 离子液体 电极 化学 复合材料 聚合物 有机化学 光电子学 医学 工程类 内分泌学 物理化学 催化作用
作者
Pritesh Parikh,Mahsa Sina,Abhik Banerjee,Xuefeng Wang,Macwin Savio D’Souza,Jean-Marie Doux,Erik A. Wu,Osman Y. Trieu,Yongbai Gong,Qian Zhou,Kent Snyder,Ying Shirley Meng
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:31 (7): 2535-2544 被引量:116
标识
DOI:10.1021/acs.chemmater.8b05020
摘要

To obtain high-energy density Li-ion batteries for the next-generation storage devices, silicon anodes provide a viable option because of their high theoretical capacity, low operating potential versus lithium (Li), and environmental abundance. However, the silicon electrode suffers from large volume expansion (∼300%) that leads to mechanical failure, cracks in the SEI (solid electrolyte interphase), and loss of contact with the current collector, all of which severely impede the capacity retention. In this respect, the choice of binders, carbon, electrolyte, and the morphology of the silicon itself plays a critical role in improving capacity retention. Of specific mention is the role of binders where a carboxylic acid-heavy group, PAA (polyacrylic acid), has been demonstrated to have better cycling capacity retention as compared to CMC (carboxy methyl cellulose). Traditionally, the role of binders has been proposed as a soft matrix backbone that allows volume expansion of the anode while preserving its morphology. However, the effect of the binder on both the rate of formation of SEI species across cycles and its distribution around the silicon nanoparticles has not been completely investigated. Herein, we use two different binders (PAA and CMC) coupled with LiFSI (lithium bis(fluorosulfonyl)imide)/EMI-FSI (1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide) ionic liquid as the electrolyte to understand the effect of binder on the SEI. Using STEM-EDX (scanning transmission electron microscopy–energy-dispersive X-ray spectroscopy), EELS (electron energy loss spectroscopy), and XPS (X-ray photoelectron spectroscopy), we discuss the evolution of the SEI on the Si electrode for both binders. Our results indicate that a faster decomposition of FSI– with a PAA binder leads to LiF (lithium fluoride) formation, making F– unavailable for subsequent SEI formation cycles. This allows further decomposition of the LiFSI salt to sulfates and sulfides which form a crucial component of the SEI around silicon nanoparticles after 100 cycles in the PAA binder-based system. The dual effects of faster consumption of F– to form LiF together with the distribution of passivating sulfides in the SEI could allow for better capacity retention in the PAA binder system as compared to that with CMC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cheng完成签到 ,获得积分10
4秒前
JamesPei应助yjj采纳,获得10
4秒前
香蕉觅云应助Xia采纳,获得10
4秒前
lulu完成签到,获得积分10
4秒前
天天开心完成签到,获得积分10
5秒前
Adrian完成签到 ,获得积分10
7秒前
keyang发布了新的文献求助30
8秒前
11秒前
紫金大萝卜举报sowhat求助涉嫌违规
12秒前
13秒前
15秒前
15秒前
15秒前
旅途之人发布了新的文献求助10
19秒前
lvben发布了新的文献求助10
19秒前
百毒不侵完成签到,获得积分10
19秒前
yjj发布了新的文献求助10
20秒前
20秒前
巴纳拉完成签到,获得积分10
21秒前
所所应助zz采纳,获得10
21秒前
百毒不侵发布了新的文献求助10
23秒前
Ceciliaguo完成签到,获得积分10
24秒前
流年完成签到,获得积分10
26秒前
qujunming完成签到 ,获得积分10
26秒前
科研通AI2S应助默默从灵采纳,获得10
34秒前
35秒前
36秒前
37秒前
37秒前
科研通AI2S应助白鸽鸽采纳,获得20
40秒前
阳光洋葱完成签到,获得积分10
41秒前
jks发布了新的文献求助10
41秒前
42秒前
42秒前
44秒前
44秒前
45秒前
阳光洋葱发布了新的文献求助30
46秒前
王耀完成签到,获得积分10
47秒前
星辰大海应助flag采纳,获得10
48秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
We shall sing for the fatherland 500
Chinese-English Translation Lexicon Version 3.0 500
Electronic Structure Calculations and Structure-Property Relationships on Aromatic Nitro Compounds 500
マンネンタケ科植物由来メロテルペノイド類の網羅的全合成/Collective Synthesis of Meroterpenoids Derived from Ganoderma Family 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 400
Statistical Procedures for the Medical Device Industry 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2378724
求助须知:如何正确求助?哪些是违规求助? 2086055
关于积分的说明 5235309
捐赠科研通 1813049
什么是DOI,文献DOI怎么找? 904706
版权声明 558574
科研通“疑难数据库(出版商)”最低求助积分说明 482984