Role of Polyacrylic Acid (PAA) Binder on the Solid Electrolyte Interphase in Silicon Anodes

聚丙烯酸 电解质 阳极 化学工程 材料科学 X射线光电子能谱 锂(药物) 离子液体 电极 化学 复合材料 聚合物 有机化学 光电子学 医学 工程类 内分泌学 物理化学 催化作用
作者
Pritesh Parikh,Mahsa Sina,Abhik Banerjee,Xuefeng Wang,Macwin Savio D’Souza,Jean‐Marie Doux,Erik A. Wu,Osman Y. Trieu,Yongbai Gong,Qian Zhou,Kent Snyder,Ying Shirley Meng
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:31 (7): 2535-2544 被引量:222
标识
DOI:10.1021/acs.chemmater.8b05020
摘要

To obtain high-energy density Li-ion batteries for the next-generation storage devices, silicon anodes provide a viable option because of their high theoretical capacity, low operating potential versus lithium (Li), and environmental abundance. However, the silicon electrode suffers from large volume expansion (â300%) that leads to mechanical failure, cracks in the SEI (solid electrolyte interphase), and loss of contact with the current collector, all of which severely impede the capacity retention. In this respect, the choice of binders, carbon, electrolyte, and the morphology of the silicon itself plays a critical role in improving capacity retention. Of specific mention is the role of binders where a carboxylic acid-heavy group, PAA (polyacrylic acid), has been demonstrated to have better cycling capacity retention as compared to CMC (carboxy methyl cellulose). Traditionally, the role of binders has been proposed as a soft matrix backbone that allows volume expansion of the anode while preserving its morphology. However, the effect of the binder on both the rate of formation of SEI species across cycles and its distribution around the silicon nanoparticles has not been completely investigated. Herein, we use two different binders (PAA and CMC) coupled with LiFSI (lithium bis(fluorosulfonyl)imide)/EMI-FSI (1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide) ionic liquid as the electrolyte to understand the effect of binder on the SEI. Using STEM-EDX (scanning transmission electron microscopy-energy-dispersive X-ray spectroscopy), EELS (electron energy loss spectroscopy), and XPS (X-ray photoelectron spectroscopy), we discuss the evolution of the SEI on the Si electrode for both binders. Our results indicate that a faster decomposition of FSI- with a PAA binder leads to LiF (lithium fluoride) formation, making F- unavailable for subsequent SEI formation cycles. This allows further decomposition of the LiFSI salt to sulfates and sulfides which form a crucial component of the SEI around silicon nanoparticles after 100 cycles in the PAA binder-based system. The dual effects of faster consumption of F- to form LiF together with the distribution of passivating sulfides in the SEI could allow for better capacity retention in the PAA binder system as compared to that with CMC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉迷科研发布了新的文献求助10
刚刚
张世瑞发布了新的文献求助10
刚刚
XWW完成签到 ,获得积分10
1秒前
1秒前
1秒前
何跑跑完成签到 ,获得积分10
1秒前
修勾发布了新的文献求助10
3秒前
活力蜗牛完成签到,获得积分10
3秒前
3秒前
Jasper应助完美毛豆采纳,获得10
3秒前
zqlxueli完成签到 ,获得积分10
3秒前
DamenS发布了新的文献求助10
3秒前
4秒前
5秒前
小田心发布了新的文献求助10
5秒前
6秒前
科研通AI6应助自由的冰夏采纳,获得10
8秒前
隐形曼青应助红烧驱逐舰采纳,获得10
9秒前
vampire完成签到 ,获得积分10
9秒前
10秒前
小六完成签到,获得积分10
10秒前
李健的小迷弟应助王浩采纳,获得30
10秒前
10秒前
Hustlers发布了新的文献求助10
10秒前
11秒前
yznfly举报Chen求助涉嫌违规
12秒前
无极微光应助小高子采纳,获得20
12秒前
我是老大应助zqlxueli采纳,获得10
12秒前
传奇3应助jsh采纳,获得10
12秒前
此晴可待发布了新的文献求助20
13秒前
14秒前
C2H5MgBr完成签到,获得积分10
14秒前
SciGPT应助23xyke采纳,获得10
14秒前
浮游应助czq采纳,获得10
14秒前
科研通AI6应助xiaoliu采纳,获得10
15秒前
16秒前
16秒前
铁柱发布了新的文献求助10
16秒前
16秒前
17秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5621197
求助须知:如何正确求助?哪些是违规求助? 4705939
关于积分的说明 14934259
捐赠科研通 4764936
什么是DOI,文献DOI怎么找? 2551495
邀请新用户注册赠送积分活动 1514048
关于科研通互助平台的介绍 1474746