下降(电信)
概率逻辑
机械
惯性
物理
概率密度函数
概率分布
统计物理学
粘度
经典力学
数学
工作(物理)
乙状窦函数
半径
数学分析
概率论
贝叶斯概率
数学模型
对称概率分布
随机过程
口译(哲学)
作者
Hananovitz, Mor,Frog, Ivgeni,Vinod, Appu,Multanen Victor,Tadmor, Rafael,Stern, Yotam
标识
DOI:10.60893/figshare.pof.c.8150570.v1
摘要
While drops impinging on surfaces, a biologically prevalent phenomenon, has been extensively researched, the resultant bouncing probability is yet to be quantified. We derive a model capturing the probability of a drop to bounce on a liquid surface, obtaining a dependence on three ratios: inertia to capillarity (Weber number, We), inertia-capillarity to viscosity (Laplace number, La), and drop radius to liquid layer depth. Our theory is backed by laboratory experiments, with maximal bouncing at We≈1, radius-depth ratios of ≈1/5, and La-1/4>0.01. As La-1/4 increases, the probability increases in a sigmoidal fashion.
科研通智能强力驱动
Strongly Powered by AbleSci AI