Magnetic resonance image-based brain tumour segmentation methods: A systematic review

磁共振成像 分割 人工智能 图像分割 计算机科学 深度学习 医学影像学 模式识别(心理学) 医学 放射科
作者
Jayendra M. Bhalodiya,Sarah N. Lim Choi Keung,Theodoros N. Arvanitis
出处
期刊:Digital health [SAGE Publishing]
卷期号:8: 205520762210741-205520762210741 被引量:20
标识
DOI:10.1177/20552076221074122
摘要

Background Image segmentation is an essential step in the analysis and subsequent characterisation of brain tumours through magnetic resonance imaging. In the literature, segmentation methods are empowered by open-access magnetic resonance imaging datasets, such as the brain tumour segmentation dataset. Moreover, with the increased use of artificial intelligence methods in medical imaging, access to larger data repositories has become vital in method development. Purpose To determine what automated brain tumour segmentation techniques can medical imaging specialists and clinicians use to identify tumour components, compared to manual segmentation. Methods We conducted a systematic review of 572 brain tumour segmentation studies during 2015–2020. We reviewed segmentation techniques using T1-weighted, T2-weighted, gadolinium-enhanced T1-weighted, fluid-attenuated inversion recovery, diffusion-weighted and perfusion-weighted magnetic resonance imaging sequences. Moreover, we assessed physics or mathematics-based methods, deep learning methods, and software-based or semi-automatic methods, as applied to magnetic resonance imaging techniques. Particularly, we synthesised each method as per the utilised magnetic resonance imaging sequences, study population, technical approach (such as deep learning) and performance score measures (such as Dice score). Statistical tests We compared median Dice score in segmenting the whole tumour, tumour core and enhanced tumour. Results We found that T1-weighted, gadolinium-enhanced T1-weighted, T2-weighted and fluid-attenuated inversion recovery magnetic resonance imaging are used the most in various segmentation algorithms. However, there is limited use of perfusion-weighted and diffusion-weighted magnetic resonance imaging. Moreover, we found that the U-Net deep learning technology is cited the most, and has high accuracy (Dice score 0.9) for magnetic resonance imaging-based brain tumour segmentation. Conclusion U-Net is a promising deep learning technology for magnetic resonance imaging-based brain tumour segmentation. The community should be encouraged to contribute open-access datasets so training, testing and validation of deep learning algorithms can be improved, particularly for diffusion- and perfusion-weighted magnetic resonance imaging, where there are limited datasets available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyz完成签到,获得积分10
刚刚
隐形荟完成签到 ,获得积分10
刚刚
唐平萱完成签到,获得积分10
1秒前
开心完成签到,获得积分10
1秒前
2秒前
流氓兔完成签到,获得积分10
2秒前
王哈哈完成签到,获得积分10
2秒前
鸭鸭完成签到,获得积分10
2秒前
xiaoyu完成签到,获得积分10
2秒前
忧伤的百川完成签到,获得积分10
3秒前
猫好好完成签到,获得积分10
4秒前
南北完成签到,获得积分10
4秒前
4秒前
medlive2020完成签到,获得积分10
4秒前
Jackson_Cai完成签到,获得积分10
6秒前
小羊完成签到,获得积分10
6秒前
隐形曼青应助典雅的俊驰采纳,获得10
7秒前
七QI完成签到 ,获得积分10
7秒前
zzh完成签到 ,获得积分10
7秒前
hhhhhhz应助wang采纳,获得10
7秒前
123发布了新的文献求助10
8秒前
康康星完成签到,获得积分10
9秒前
kkk完成签到,获得积分10
9秒前
研友_屈不愁完成签到,获得积分10
9秒前
Lighten完成签到 ,获得积分10
9秒前
Kang应助nong12123采纳,获得10
10秒前
10秒前
风信子完成签到,获得积分10
10秒前
12秒前
13秒前
13秒前
whyren完成签到,获得积分10
14秒前
呼呼呼完成签到,获得积分10
14秒前
15秒前
青灿笑完成签到,获得积分10
15秒前
slim完成签到,获得积分10
15秒前
开心的谷兰完成签到,获得积分10
15秒前
BINGBING完成签到,获得积分10
16秒前
Hello应助爱学习的栋采纳,获得10
17秒前
17秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4061661
求助须知:如何正确求助?哪些是违规求助? 3600275
关于积分的说明 11433299
捐赠科研通 3323815
什么是DOI,文献DOI怎么找? 1827483
邀请新用户注册赠送积分活动 897954
科研通“疑难数据库(出版商)”最低求助积分说明 818774