Magnetic resonance image-based brain tumour segmentation methods: A systematic review

磁共振成像 分割 人工智能 图像分割 计算机科学 深度学习 医学影像学 模式识别(心理学) 医学 放射科
作者
Jayendra M. Bhalodiya,Sarah N. Lim Choi Keung,Theodoros N. Arvanitis
出处
期刊:Digital health [SAGE Publishing]
卷期号:8: 205520762210741-205520762210741 被引量:20
标识
DOI:10.1177/20552076221074122
摘要

Background Image segmentation is an essential step in the analysis and subsequent characterisation of brain tumours through magnetic resonance imaging. In the literature, segmentation methods are empowered by open-access magnetic resonance imaging datasets, such as the brain tumour segmentation dataset. Moreover, with the increased use of artificial intelligence methods in medical imaging, access to larger data repositories has become vital in method development. Purpose To determine what automated brain tumour segmentation techniques can medical imaging specialists and clinicians use to identify tumour components, compared to manual segmentation. Methods We conducted a systematic review of 572 brain tumour segmentation studies during 2015–2020. We reviewed segmentation techniques using T1-weighted, T2-weighted, gadolinium-enhanced T1-weighted, fluid-attenuated inversion recovery, diffusion-weighted and perfusion-weighted magnetic resonance imaging sequences. Moreover, we assessed physics or mathematics-based methods, deep learning methods, and software-based or semi-automatic methods, as applied to magnetic resonance imaging techniques. Particularly, we synthesised each method as per the utilised magnetic resonance imaging sequences, study population, technical approach (such as deep learning) and performance score measures (such as Dice score). Statistical tests We compared median Dice score in segmenting the whole tumour, tumour core and enhanced tumour. Results We found that T1-weighted, gadolinium-enhanced T1-weighted, T2-weighted and fluid-attenuated inversion recovery magnetic resonance imaging are used the most in various segmentation algorithms. However, there is limited use of perfusion-weighted and diffusion-weighted magnetic resonance imaging. Moreover, we found that the U-Net deep learning technology is cited the most, and has high accuracy (Dice score 0.9) for magnetic resonance imaging-based brain tumour segmentation. Conclusion U-Net is a promising deep learning technology for magnetic resonance imaging-based brain tumour segmentation. The community should be encouraged to contribute open-access datasets so training, testing and validation of deep learning algorithms can be improved, particularly for diffusion- and perfusion-weighted magnetic resonance imaging, where there are limited datasets available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
斯文败类应助破晓星采纳,获得10
3秒前
3秒前
5秒前
tyy完成签到 ,获得积分10
6秒前
8秒前
情怀应助工艺员采纳,获得10
8秒前
哎哟可爱发布了新的文献求助10
8秒前
藤椒辣鱼应助友好太兰采纳,获得10
9秒前
陈瑾初发布了新的文献求助10
9秒前
9秒前
11秒前
TCAcycle发布了新的文献求助10
12秒前
邵将发布了新的文献求助10
12秒前
13秒前
打打应助鲤鱼新儿采纳,获得30
14秒前
14秒前
Roy发布了新的文献求助10
14秒前
万点草发布了新的文献求助30
15秒前
18秒前
127完成签到,获得积分10
18秒前
19秒前
哎哟可爱完成签到,获得积分10
19秒前
20秒前
hd发布了新的文献求助10
21秒前
xu发布了新的文献求助10
21秒前
桐桐应助asdf采纳,获得10
22秒前
白三烯小童鞋完成签到 ,获得积分10
22秒前
22秒前
浮游应助依依采纳,获得10
23秒前
冷酷的浩天完成签到,获得积分10
24秒前
24秒前
xiu-er发布了新的文献求助10
25秒前
26秒前
27秒前
27秒前
27秒前
moon发布了新的文献求助10
29秒前
大神瓜发布了新的文献求助10
30秒前
婷婷婷完成签到 ,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287927
求助须知:如何正确求助?哪些是违规求助? 4439938
关于积分的说明 13823438
捐赠科研通 4322173
什么是DOI,文献DOI怎么找? 2372367
邀请新用户注册赠送积分活动 1367876
关于科研通互助平台的介绍 1331448