计算机科学
判别式
人工智能
机器学习
图形
节点(物理)
班级(哲学)
监督学习
半监督学习
参数统计
人工神经网络
理论计算机科学
数学
结构工程
工程类
统计
作者
Junseok Lee,Yunhak Oh,Yeonjun In,Namkyeong Lee,Dongmin Hyun,Chanyoung Park
标识
DOI:10.1145/3477495.3531838
摘要
Despite the success of Graph Neural Networks (GNNs) on various applications, GNNs encounter significant performance degradation when the amount of supervision signals, i.e., number of labeled nodes, is limited, which is expected as GNNs are trained solely based on the supervision obtained from the labeled nodes. On the other hand,recent self-supervised learning paradigm aims to train GNNs by solving pretext tasks that do not require any labeled nodes, and it has shown to even outperform GNNs trained with few labeled nodes. However, a major drawback of self-supervised methods is that they fall short of learning class discriminative node representations since no labeled information is utilized during training. To this end, we propose a novel semi-supervised method for graphs, GraFN, that leverages few labeled nodes to ensure nodes that belong to the same class to be grouped together, thereby achieving the best of both worlds of semi-supervised and self-supervised methods. Specifically, GraFN randomly samples support nodes from labeled nodes and anchor nodes from the entire graph. Then, it minimizes the difference between two predicted class distributions that are non-parametrically assigned by anchor-supports similarity from two differently augmented graphs. We experimentally show that GraFN surpasses both the semi-supervised and self-supervised methods in terms of node classification on real-world graphs. The source code for GraFN is available at https://github.com/Junseok0207/GraFN.
科研通智能强力驱动
Strongly Powered by AbleSci AI