Physics-informed neural networks for phase-field method in two-phase flow

人工神经网络 物理 接口(物质) 流量(数学) 相(物质) 领域(数学) 非线性系统 两相流 应用数学 统计物理学 人工智能 机械 计算机科学 数学 量子力学 最大气泡压力法 气泡 纯数学
作者
Rundi Qiu,Renfang Huang,Yao Xiao,Jingzhu Wang,Zhen Zhang,Jie-shun Yue,Zhong Zeng,Yiwei Wang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:34 (5) 被引量:68
标识
DOI:10.1063/5.0091063
摘要

The complex flow modeling based on machine learning is becoming a promising way to describe multiphase fluid systems. This work demonstrates how a physics-informed neural network promotes the combination of traditional governing equations and advanced interface evolution equations without intricate algorithms. We develop physics-informed neural networks for the phase-field method (PF-PINNs) in two-dimensional immiscible incompressible two-phase flow. The Cahn–Hillard equation and Navier–Stokes equations are encoded directly into the residuals of a fully connected neural network. Compared with the traditional interface-capturing method, the phase-field model has a firm physical basis because it is based on the Ginzburg–Landau theory and conserves mass and energy. It also performs well in two-phase flow at the large density ratio. However, the high-order differential nonlinear term of the Cahn–Hilliard equation poses a great challenge for obtaining numerical solutions. Thus, in this work, we adopt neural networks to tackle the challenge by solving high-order derivate terms and capture the interface adaptively. To enhance the accuracy and efficiency of PF-PINNs, we use the time-marching strategy and the forced constraint of the density and viscosity. The PF-PINNs are tested by two cases for presenting the interface-capturing ability of PINNs and evaluating the accuracy of PF-PINNs at the large density ratio (up to 1000). The shape of the interface in both cases coincides well with the reference results, and the dynamic behavior of the second case is precisely captured. We also quantify the variations in the center of mass and increasing velocity over time for validation purposes. The results show that PF-PINNs exploit the automatic differentiation without sacrificing the high accuracy of the phase-field method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助DoctorG采纳,获得30
2秒前
3秒前
白白完成签到,获得积分10
4秒前
6秒前
冰魂应助过昼采纳,获得10
6秒前
jjwen发布了新的文献求助10
6秒前
科研通AI2S应助机灵哲瀚采纳,获得10
7秒前
tengfei发布了新的文献求助10
9秒前
秭归子归发布了新的文献求助10
10秒前
脑洞疼应助家立诚采纳,获得10
12秒前
斯文败类应助斑其采纳,获得10
13秒前
15秒前
16秒前
落寞的又菡完成签到,获得积分10
19秒前
21秒前
DoctorG发布了新的文献求助30
22秒前
上官若男应助jjwen采纳,获得10
23秒前
24秒前
lixm完成签到,获得积分10
25秒前
26秒前
科研通AI2S应助DoctorG采纳,获得30
27秒前
家立诚发布了新的文献求助10
27秒前
快去爬山完成签到 ,获得积分10
28秒前
lixm发布了新的文献求助10
30秒前
司徒不正发布了新的文献求助10
31秒前
yym发布了新的文献求助10
36秒前
科研通AI5应助雾野采纳,获得10
38秒前
NexusExplorer应助BBking采纳,获得50
42秒前
45秒前
45秒前
47秒前
48秒前
BBking发布了新的文献求助50
51秒前
yym发布了新的文献求助10
51秒前
serein完成签到,获得积分20
51秒前
52秒前
鲸鱼姐姐发布了新的文献求助10
55秒前
56秒前
英俊的铭应助serein采纳,获得10
57秒前
汉堡包应助CHiaretto采纳,获得10
59秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777008
求助须知:如何正确求助?哪些是违规求助? 3322389
关于积分的说明 10210090
捐赠科研通 3037746
什么是DOI,文献DOI怎么找? 1666872
邀请新用户注册赠送积分活动 797711
科研通“疑难数据库(出版商)”最低求助积分说明 758040