亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Physics-informed neural networks for phase-field method in two-phase flow

人工神经网络 物理 接口(物质) 流量(数学) 相(物质) 领域(数学) 非线性系统 两相流 应用数学 统计物理学 人工智能 机械 计算机科学 数学 量子力学 最大气泡压力法 气泡 纯数学
作者
Rundi Qiu,Renfang Huang,Yao Xiao,Jingzhu Wang,Zhen Zhang,Jie-shun Yue,Zhong Zeng,Yiwei Wang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:34 (5) 被引量:95
标识
DOI:10.1063/5.0091063
摘要

The complex flow modeling based on machine learning is becoming a promising way to describe multiphase fluid systems. This work demonstrates how a physics-informed neural network promotes the combination of traditional governing equations and advanced interface evolution equations without intricate algorithms. We develop physics-informed neural networks for the phase-field method (PF-PINNs) in two-dimensional immiscible incompressible two-phase flow. The Cahn–Hillard equation and Navier–Stokes equations are encoded directly into the residuals of a fully connected neural network. Compared with the traditional interface-capturing method, the phase-field model has a firm physical basis because it is based on the Ginzburg–Landau theory and conserves mass and energy. It also performs well in two-phase flow at the large density ratio. However, the high-order differential nonlinear term of the Cahn–Hilliard equation poses a great challenge for obtaining numerical solutions. Thus, in this work, we adopt neural networks to tackle the challenge by solving high-order derivate terms and capture the interface adaptively. To enhance the accuracy and efficiency of PF-PINNs, we use the time-marching strategy and the forced constraint of the density and viscosity. The PF-PINNs are tested by two cases for presenting the interface-capturing ability of PINNs and evaluating the accuracy of PF-PINNs at the large density ratio (up to 1000). The shape of the interface in both cases coincides well with the reference results, and the dynamic behavior of the second case is precisely captured. We also quantify the variations in the center of mass and increasing velocity over time for validation purposes. The results show that PF-PINNs exploit the automatic differentiation without sacrificing the high accuracy of the phase-field method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
110o发布了新的文献求助10
12秒前
110o完成签到,获得积分10
21秒前
深情的楷瑞完成签到 ,获得积分10
35秒前
故酒应助科研通管家采纳,获得10
1分钟前
我是老大应助科研通管家采纳,获得10
1分钟前
幸运的姜姜完成签到 ,获得积分10
1分钟前
zsmj23完成签到 ,获得积分0
2分钟前
3分钟前
默默善愁发布了新的文献求助10
3分钟前
Akim应助科研通管家采纳,获得10
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
故酒应助科研通管家采纳,获得10
3分钟前
bkagyin应助默默善愁采纳,获得10
3分钟前
宅心仁厚完成签到 ,获得积分10
4分钟前
IMP完成签到 ,获得积分10
4分钟前
成就丸子完成签到 ,获得积分10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
领导范儿应助科研通管家采纳,获得10
5分钟前
大模型应助神勇绮琴采纳,获得10
5分钟前
drirshad完成签到,获得积分10
5分钟前
5分钟前
李健应助清脆元冬采纳,获得10
5分钟前
xiaokun发布了新的文献求助10
6分钟前
6分钟前
6分钟前
清脆元冬完成签到,获得积分20
6分钟前
清脆元冬发布了新的文献求助10
6分钟前
我找到月亮了完成签到 ,获得积分10
7分钟前
Tumumu完成签到,获得积分10
7分钟前
GingerF应助科研通管家采纳,获得50
7分钟前
传奇3应助科研通管家采纳,获得30
7分钟前
Swear完成签到 ,获得积分10
7分钟前
8分钟前
561发布了新的文献求助10
8分钟前
561完成签到,获得积分10
8分钟前
科研通AI5应助andrele采纳,获得10
8分钟前
卡琳完成签到 ,获得积分10
9分钟前
ceeray23应助科研通管家采纳,获得10
9分钟前
ceeray23应助科研通管家采纳,获得10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5186749
求助须知:如何正确求助?哪些是违规求助? 4371863
关于积分的说明 13612640
捐赠科研通 4224580
什么是DOI,文献DOI怎么找? 2317098
邀请新用户注册赠送积分活动 1315729
关于科研通互助平台的介绍 1265032