Physics-informed neural networks for phase-field method in two-phase flow

人工神经网络 物理 接口(物质) 流量(数学) 相(物质) 领域(数学) 非线性系统 两相流 应用数学 统计物理学 人工智能 机械 计算机科学 数学 量子力学 最大气泡压力法 气泡 纯数学
作者
Rundi Qiu,Renfang Huang,Yao Xiao,Jingzhu Wang,Zhen Zhang,Jie-shun Yue,Zhong Zeng,Yiwei Wang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:34 (5) 被引量:78
标识
DOI:10.1063/5.0091063
摘要

The complex flow modeling based on machine learning is becoming a promising way to describe multiphase fluid systems. This work demonstrates how a physics-informed neural network promotes the combination of traditional governing equations and advanced interface evolution equations without intricate algorithms. We develop physics-informed neural networks for the phase-field method (PF-PINNs) in two-dimensional immiscible incompressible two-phase flow. The Cahn–Hillard equation and Navier–Stokes equations are encoded directly into the residuals of a fully connected neural network. Compared with the traditional interface-capturing method, the phase-field model has a firm physical basis because it is based on the Ginzburg–Landau theory and conserves mass and energy. It also performs well in two-phase flow at the large density ratio. However, the high-order differential nonlinear term of the Cahn–Hilliard equation poses a great challenge for obtaining numerical solutions. Thus, in this work, we adopt neural networks to tackle the challenge by solving high-order derivate terms and capture the interface adaptively. To enhance the accuracy and efficiency of PF-PINNs, we use the time-marching strategy and the forced constraint of the density and viscosity. The PF-PINNs are tested by two cases for presenting the interface-capturing ability of PINNs and evaluating the accuracy of PF-PINNs at the large density ratio (up to 1000). The shape of the interface in both cases coincides well with the reference results, and the dynamic behavior of the second case is precisely captured. We also quantify the variations in the center of mass and increasing velocity over time for validation purposes. The results show that PF-PINNs exploit the automatic differentiation without sacrificing the high accuracy of the phase-field method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Alice完成签到,获得积分20
1秒前
2秒前
Doctor-C完成签到,获得积分10
4秒前
聪慧豁完成签到,获得积分10
5秒前
7秒前
慕雨倾欣发布了新的文献求助10
7秒前
TTT发布了新的文献求助10
7秒前
noah完成签到,获得积分20
8秒前
Byron完成签到,获得积分10
8秒前
ZZ发布了新的文献求助10
8秒前
可爱的函函应助旺王雪饼采纳,获得10
9秒前
灵巧的沛山完成签到,获得积分10
11秒前
13秒前
15秒前
孤星泪完成签到,获得积分10
15秒前
16秒前
支妙完成签到,获得积分10
16秒前
浅暖发布了新的文献求助20
16秒前
18秒前
19秒前
可爱的函函应助aaa采纳,获得10
19秒前
汉堡包应助chengcheng采纳,获得10
20秒前
chen完成签到,获得积分10
21秒前
22秒前
22秒前
23秒前
戈惜发布了新的文献求助10
23秒前
科研通AI5应助葛蓉采纳,获得10
23秒前
24秒前
CipherSage应助高怀蝶采纳,获得10
25秒前
星辰大海应助TTT采纳,获得10
25秒前
大个应助浮浮世世采纳,获得30
26秒前
26秒前
26秒前
豆豆完成签到,获得积分10
26秒前
linkman发布了新的文献求助10
27秒前
aaa完成签到,获得积分10
27秒前
27秒前
华仔应助武汉理工材料采纳,获得10
29秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 760
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4147719
求助须知:如何正确求助?哪些是违规求助? 3684352
关于积分的说明 11640733
捐赠科研通 3378235
什么是DOI,文献DOI怎么找? 1853991
邀请新用户注册赠送积分活动 916356
科研通“疑难数据库(出版商)”最低求助积分说明 830271