亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Inversion Using Adaptive Physics-Based Neural Network: Application to Magnetotelluric Inversion

反演(地质) 人工神经网络 计算机科学 最大值和最小值 过度拟合 算法 概化理论 大地电磁法 反问题 人工智能 地球物理学 机器学习
作者
Taqi Alyousuf,Li Yaoguo
标识
DOI:10.2523/iptc-22504-ea
摘要

Abstract In order to develop a geophysical earth model that is consistent with the measured geophysical data, two types of inversions are commonly used: a physics-based regularized inversion and a statistical-based machine learning inversion. In nonlinear problems, deterministic regularized inversion usually necessitates a good starting model to prevent possible local minima. The neural networks inversion requires large training data sets, which makes its generalizability limited. To overcome the limitation of physics-based regularized inversion and a statistical-based machine learning inversion and combine the benefits of both one inversion scheme, we developed a new physics-based neural network (PBNN) inversion algorithm. In our PBNN inversion, we include machine learning constraints into the regularized inversion using a coupling model objective function. The coupling objective function aims to minimize the difference between the recovered model through regularized inversion and the network-predicted reference model. We update the reference model using either a fully-trained network or an adaptively-trained network. The fully trained PBNN has the ability to collect all of the connections between data and models through a pseudoinverse operator. However, for geophysical inversion applications, particularly in the exploratory setting, this approach is unlikely to become feasible. Neural networks may struggle to extract complicated correlations from data when given insufficient data observations. The technique is impractical for practical usage due to the quantity of training required. In our novel adaptively PBNN algorithm, there is no need to prepare a training data set. At each iteration, the adaptively-PBNN algorithm retrains using the recovered models from the regularized inversion and their related data. The regularized inversion's recovered resistivity models are sufficient to guide neural network predictions towards the true model. One unique advantage is that the approach’s ability to fully use all intermediate models from the regularized inversion that were commonly discarded and apply them to the network training. When applied to synthetic MT data, we show that our technique is capable of reconstructing high-resolution resistivity models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暗号完成签到 ,获得积分0
7秒前
mint关注了科研通微信公众号
7秒前
团团完成签到 ,获得积分10
8秒前
12秒前
Hello应助青山采纳,获得10
15秒前
16秒前
19秒前
20秒前
luk发布了新的文献求助10
24秒前
笨笨完成签到,获得积分10
31秒前
碧蓝满天完成签到 ,获得积分10
34秒前
Ava应助重要的冰绿采纳,获得10
34秒前
36秒前
luk完成签到,获得积分10
36秒前
bkagyin应助ZERO采纳,获得10
37秒前
勇敢心发布了新的文献求助10
41秒前
48秒前
青山发布了新的文献求助10
53秒前
1分钟前
CherishLars发布了新的文献求助50
1分钟前
唐唐完成签到 ,获得积分0
1分钟前
1分钟前
Paris完成签到 ,获得积分10
1分钟前
科目三应助RYY采纳,获得10
1分钟前
somnus_fu发布了新的文献求助10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
Li应助somnus_fu采纳,获得20
2分钟前
美好乐松完成签到,获得积分0
2分钟前
2分钟前
qc应助阳佟水蓉采纳,获得50
2分钟前
美好乐松发布了新的文献求助10
2分钟前
我去买俩橘子完成签到 ,获得积分10
2分钟前
Salt1222发布了新的文献求助200
2分钟前
2分钟前
dudu发布了新的文献求助10
2分钟前
悦耳冬萱完成签到 ,获得积分10
2分钟前
2分钟前
拼搏向上发布了新的文献求助30
2分钟前
科研通AI5应助心落失采纳,获得10
2分钟前
pia叽完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Irregular Migration in Southeast Asia: Contemporary Barriers to Regularization and Healthcare 2000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5052952
求助须知:如何正确求助?哪些是违规求助? 4279864
关于积分的说明 13340060
捐赠科研通 4095445
什么是DOI,文献DOI怎么找? 2241585
邀请新用户注册赠送积分活动 1247896
关于科研通互助平台的介绍 1177293