Inversion Using Adaptive Physics-Based Neural Network: Application to Magnetotelluric Inversion

反演(地质) 人工神经网络 计算机科学 最大值和最小值 过度拟合 算法 概化理论 大地电磁法 反问题 人工智能 地球物理学 机器学习
作者
Taqi Alyousuf,Li Yaoguo
标识
DOI:10.2523/iptc-22504-ea
摘要

Abstract In order to develop a geophysical earth model that is consistent with the measured geophysical data, two types of inversions are commonly used: a physics-based regularized inversion and a statistical-based machine learning inversion. In nonlinear problems, deterministic regularized inversion usually necessitates a good starting model to prevent possible local minima. The neural networks inversion requires large training data sets, which makes its generalizability limited. To overcome the limitation of physics-based regularized inversion and a statistical-based machine learning inversion and combine the benefits of both one inversion scheme, we developed a new physics-based neural network (PBNN) inversion algorithm. In our PBNN inversion, we include machine learning constraints into the regularized inversion using a coupling model objective function. The coupling objective function aims to minimize the difference between the recovered model through regularized inversion and the network-predicted reference model. We update the reference model using either a fully-trained network or an adaptively-trained network. The fully trained PBNN has the ability to collect all of the connections between data and models through a pseudoinverse operator. However, for geophysical inversion applications, particularly in the exploratory setting, this approach is unlikely to become feasible. Neural networks may struggle to extract complicated correlations from data when given insufficient data observations. The technique is impractical for practical usage due to the quantity of training required. In our novel adaptively PBNN algorithm, there is no need to prepare a training data set. At each iteration, the adaptively-PBNN algorithm retrains using the recovered models from the regularized inversion and their related data. The regularized inversion's recovered resistivity models are sufficient to guide neural network predictions towards the true model. One unique advantage is that the approach’s ability to fully use all intermediate models from the regularized inversion that were commonly discarded and apply them to the network training. When applied to synthetic MT data, we show that our technique is capable of reconstructing high-resolution resistivity models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心发布了新的文献求助30
刚刚
黄小佳完成签到,获得积分10
刚刚
carly发布了新的文献求助10
1秒前
LBF在努力成长完成签到,获得积分10
1秒前
1秒前
执着的若翠完成签到,获得积分10
2秒前
2秒前
2秒前
long完成签到,获得积分10
2秒前
2秒前
Robert完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
斯文败类应助九霄采纳,获得10
4秒前
邦哥完成签到,获得积分10
4秒前
邓邓发布了新的文献求助10
5秒前
5秒前
苦杏仁完成签到,获得积分10
5秒前
慕青应助ClutchFactor_3采纳,获得10
6秒前
负责之柔完成签到,获得积分10
7秒前
愉快的秋凌完成签到,获得积分10
7秒前
paojiao不辣发布了新的文献求助10
7秒前
7秒前
8秒前
yangyang给yangyang的求助进行了留言
8秒前
lwz2688完成签到,获得积分10
8秒前
取个名儿吧完成签到,获得积分10
8秒前
8秒前
Lingkoi完成签到,获得积分20
8秒前
lalala发布了新的文献求助30
9秒前
hooo完成签到,获得积分10
9秒前
阳光千亦完成签到,获得积分10
9秒前
9秒前
李爱国应助王三歲采纳,获得10
10秒前
星渊完成签到,获得积分10
10秒前
jianhan发布了新的文献求助10
10秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806041
求助须知:如何正确求助?哪些是违规求助? 3350870
关于积分的说明 10351903
捐赠科研通 3066760
什么是DOI,文献DOI怎么找? 1684143
邀请新用户注册赠送积分活动 809333
科研通“疑难数据库(出版商)”最低求助积分说明 765463