Accuracy and Efficiency of Machine Learning–Assisted Risk-of-Bias Assessments in “Real-World” Systematic Reviews

医学 系统回顾 随机对照试验 随机化 心理干预 物理疗法 梅德林 外科 护理部 政治学 法学
作者
Anneliese Arno,James Thomas,Byron Wallace,Iain Marshall,Joanne E. McKenzie,Julian Elliott
出处
期刊:Annals of Internal Medicine [American College of Physicians]
卷期号:175 (7): 1001-1009 被引量:15
标识
DOI:10.7326/m22-0092
摘要

Background: Automation is a proposed solution for the increasing difficulty of maintaining up-to-date, high-quality health evidence. Evidence assessing the effectiveness of semiautomated data synthesis, such as risk-of-bias (RoB) assessments, is lacking. Objective: To determine whether RobotReviewer-assisted RoB assessments are noninferior in accuracy and efficiency to assessments conducted with human effort only. Design: Two-group, parallel, noninferiority, randomized trial. (Monash Research Office Project 11256) Setting: Health-focused systematic reviews using Covidence. Participants: Systematic reviewers, who had not previously used RobotReviewer, completing Cochrane RoB assessments between February 2018 and May 2020. Intervention: In the intervention group, reviewers received an RoB form prepopulated by RobotReviewer; in the comparison group, reviewers received a blank form. Studies were assigned in a 1:1 ratio via simple randomization to receive RobotReviewer assistance for either Reviewer 1 or Reviewer 2. Participants were blinded to study allocation before starting work on each RoB form. Measurements: Co-primary outcomes were the accuracy of individual reviewer RoB assessments and the person-time required to complete individual assessments. Domain-level RoB accuracy was a secondary outcome. Results: Of the 15 recruited review teams, 7 completed the trial (145 included studies). Integration of RobotReviewer resulted in noninferior overall RoB assessment accuracy (risk difference, −0.014 [95% CI, −0.093 to 0.065]; intervention group: 88.8% accurate assessments; control group: 90.2% accurate assessments). Data were inconclusive for the person-time outcome (RobotReviewer saved 1.40 minutes [CI, −5.20 to 2.41 minutes]). Limitation: Variability in user behavior and a limited number of assessable reviews led to an imprecise estimate of the time outcome. Conclusion: In health-related systematic reviews, RoB assessments conducted with RobotReviewer assistance are noninferior in accuracy to those conducted without RobotReviewer assistance. Primary Funding Source: University College London and Monash University.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzz发布了新的文献求助10
刚刚
刚刚
耀星应助酷炫怀莲采纳,获得10
1秒前
1秒前
敏敏完成签到,获得积分20
2秒前
2秒前
哇呀呀发布了新的文献求助50
6秒前
survivaluu发布了新的文献求助10
6秒前
加一发布了新的文献求助10
6秒前
保佑我毕业完成签到 ,获得积分10
6秒前
555完成签到,获得积分10
7秒前
徐若楠发布了新的文献求助10
7秒前
8秒前
8秒前
科研通AI2S应助dyn采纳,获得10
9秒前
10秒前
ding应助小红采纳,获得10
10秒前
阿仁不想搞科研完成签到 ,获得积分10
10秒前
喜悦完成签到,获得积分10
11秒前
科研通AI5应助淡淡的尔容采纳,获得10
11秒前
adljian完成签到,获得积分10
12秒前
12秒前
STZHEN发布了新的文献求助10
14秒前
16秒前
16秒前
fcc完成签到,获得积分10
17秒前
17秒前
冷酷代珊发布了新的文献求助10
18秒前
今后应助元夕夕夕采纳,获得10
18秒前
18秒前
大冰完成签到,获得积分10
19秒前
fcc发布了新的文献求助10
20秒前
自由的天荷完成签到,获得积分20
21秒前
Aniee完成签到,获得积分10
21秒前
Silvia发布了新的文献求助10
22秒前
22秒前
星辰大海应助岚叶采纳,获得10
23秒前
24秒前
没有昵称发布了新的文献求助10
24秒前
25秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826664
求助须知:如何正确求助?哪些是违规求助? 3368977
关于积分的说明 10453373
捐赠科研通 3088541
什么是DOI,文献DOI怎么找? 1699175
邀请新用户注册赠送积分活动 817281
科研通“疑难数据库(出版商)”最低求助积分说明 770148