Current sensor fault diagnosis method based on an improved equivalent circuit battery model

电流传感器 断层(地质) 卡尔曼滤波器 电压 控制理论(社会学) 工程类 电池(电) 故障检测与隔离 电流(流体) 灵敏度(控制系统) 电子工程 计算机科学 电气工程 功率(物理) 人工智能 物理 控制(管理) 量子力学 地震学 地质学 执行机构
作者
Quanqing Yu,Lei Dai,Rui Xiong,Zeyu Chen,Xin Zhang,Weixiang Shen
出处
期刊:Applied Energy [Elsevier BV]
卷期号:310: 118588-118588 被引量:112
标识
DOI:10.1016/j.apenergy.2022.118588
摘要

• An improved model with the voltage as input and current as output (VICO) is proposed. • The established VICO model is extended to an n -order VICO model. • The fault diagnosis method of current sensor is realized with the first-order VICO model. • The adaptability under different operating conditions and merit in detecting time are verified. Battery management systems (BMSs) are very important to ensure the safety of electric vehicles. The normal operation of BMSs is highly dependent on the accuracy of battery sensors. The present fault diagnosis efficiency of current sensors is much lower than that of voltage sensors due to model limitations in conventional methods. In this paper, a fault diagnosis method based on an improved model with voltage as input and current as output (VICO) is proposed to detect current sensor faults, where the least squares method combined with the unscented Kalman filter is used to estimate the fault current of current sensor. By comparing the estimated fault current with the diagnosis threshold, the fast fault diagnosis of current sensor is realized. The proposed method is verified under different operating conditions and compared with the methods based on state of charge and open-circuit voltage residuals. To highlight the importance of the proposed method, the influence and possible causes of minor faults and temperature on diagnosis are analyzed. The experimental results show that the method can detect the fault of the current sensor more accurately and quickly compared with the conventional methods, and has the ability to detect minor faults and adaptability under different operating conditions and temperatures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小陈总发布了新的文献求助30
刚刚
刚刚
一剑白完成签到 ,获得积分10
1秒前
SciGPT应助shenyanlei采纳,获得10
1秒前
2秒前
CipherSage应助景别采纳,获得10
2秒前
今后应助寰2023采纳,获得10
2秒前
2秒前
Camellia完成签到,获得积分10
3秒前
浮游应助研友_LmVygn采纳,获得10
3秒前
3秒前
4秒前
来个肉盒子完成签到 ,获得积分10
4秒前
4秒前
神勇映安完成签到,获得积分10
4秒前
飘逸黄豆完成签到,获得积分10
4秒前
4秒前
5秒前
LI发布了新的文献求助10
5秒前
5秒前
科研通AI5应助认真的访梦采纳,获得10
5秒前
NexusExplorer应助Netsky采纳,获得10
5秒前
yanyimeng完成签到,获得积分10
5秒前
6秒前
水煮牛牛发布了新的文献求助10
6秒前
hbkj完成签到,获得积分10
6秒前
二哈完成签到,获得积分10
6秒前
田田田田完成签到,获得积分10
6秒前
zjh发布了新的文献求助10
7秒前
bym发布了新的文献求助10
7秒前
8秒前
好好学习的大大莹完成签到,获得积分10
8秒前
8秒前
8秒前
岑岑完成签到,获得积分10
8秒前
王鑫发布了新的文献求助10
8秒前
wang驳回了慕青应助
8秒前
scxl2000发布了新的文献求助10
9秒前
所所应助mark采纳,获得10
9秒前
迟暮完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5067949
求助须知:如何正确求助?哪些是违规求助? 4289689
关于积分的说明 13364572
捐赠科研通 4109436
什么是DOI,文献DOI怎么找? 2250320
邀请新用户注册赠送积分活动 1255685
关于科研通互助平台的介绍 1188198