指数
不相关
物理
振幅
杂质
凝聚态物理
幂律
领域(数学)
磁畴壁(磁性)
领域(数学分析)
随机场
统计物理学
量子力学
数学
数学分析
磁场
统计
磁化
哲学
语言学
纯数学
出处
期刊:EPL
[Institute of Physics]
日期:1987-12-01
卷期号:4 (11): 1241-1246
被引量:89
标识
DOI:10.1209/0295-5075/4/11/005
摘要
The Schwartz-Villain model of anticorrelated quenched random fields interacting with the interface is considered in 2 dimensions via Burger's equation. For random field (anti-)-correlations decaying with a power law exponent 1 + 2μ, the model interpolates continuously between uncorrelated random fields, μ = 0, and random bonds impurities μ ⩾ 1. For μ < μc the roughening exponent ζ is ζ = 3/(3 + 2μ) in agreement with an Imry-Ma argument. For μ > μc, ζ turns out to be superuniversal ζ = 2/3 with μc = 3/4 from a one-loop calculation. The roughness amplitudes are calculated and their relation to domain wall interactions, pinning forces and interface velocity in driving field is stated.
科研通智能强力驱动
Strongly Powered by AbleSci AI